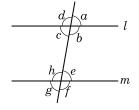
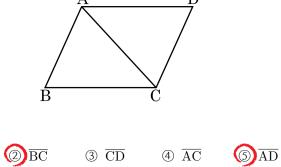

1. 다음 그림과 같이 점 M 이 선분 BC 의 중점이고, $\overline{AC}=16{
m cm}$, $\overline{AB}=6{
m cm}$ 일 때, \overline{BM} 의 길이를 구하면?


① 4cm ② 5cm ③ 6cm ④ 7cm ⑤ 8cm

 $\overline{BC}=16-6=10 ({
m cm})$ 이므로 $\overline{BM}=\overline{MC}=\frac{1}{2}\overline{BC}=5 ({
m cm})$ 이다.

2. 다음 각에서 예각을 고르면?

① 100° ② 105° ③ 120° ④80° ⑤ 95°


3. 다음 설명 중 옳지 <u>않은</u> 것은?

- ① $l /\!\!/ m$ 이면 $\angle a = \angle e$ 이다.
- ② $l /\!\!/ m$ 이면 $\angle c + \angle h = 180^\circ$ 이다.
- ③ l // m 이면 ∠b = ∠e 이다.④ 억간의 크기는 항상 간지
- ④ 엇각의 크기는 항상 같지는 않다.⑤ 동위각의 크기는 항상 같지는 않다.

③ $l /\!\!/ m$ 이면 $\angle b = \angle h$ 이다.

다음 평행사변형에서 $\overline{\mathrm{AD}}$ 와 한 점에서 만나지 않는 선분을 모두 구하면? 4.

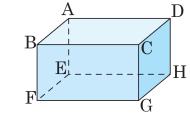
 \bigcirc AC

 \bigcirc \overline{AB}

해설

평행사변형 $\overline{
m AD}$ 와 한 점에서 만나는 선분은 $\overline{
m AB}$, $\overline{
m AC}$, $\overline{
m CD}$ 이다.

- **5.** 다음 중 한 평면 위에 있는 두 직선의 위치 관계가 <u>아닌</u> 것은?

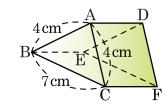

해설

- ① 일치한다. ② 평행하다.
- ③ 직교한다. ④ 한 점에서 만난다.

⑤ 꼬인 위치에 있다.

⑤ 두 직선의 꼬인 위치는 공간에서만 존재한다.

6. 다음 직육면체에서 면 BFEA 에 평행인 모서리는 모두 몇 개인지 구하면?

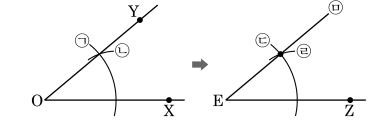


① 없다. ② 1개 ③ 2개

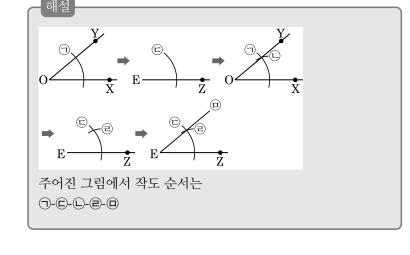
④ 3 개

직육면체에서 면 BFEA 에 평행인 모서리는 $\overline{ ext{CG}}$, $\overline{ ext{CD}}$, $\overline{ ext{DH}}$, $\overline{ ext{GH}}$ 이다.

7. 다음 삼각기둥을 보고 평면 ABC 와 평행한 면을 구하면?

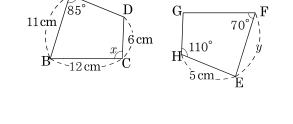

① 면BCFE ④ 면ACFD ②면DEF ③ 면ABED

해설


⑤ 면ABC

 $\overline{\mathrm{AB}}//\overline{\mathrm{DE}},\;\overline{\mathrm{BC}}//\overline{\mathrm{EF}}$ 이므로 평면 ABC 는 평면 DEF 와 평행하 다.

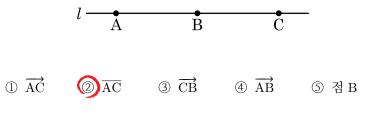
8. 다음 그림은 ∠XOY 와 크기가 같은 각을 \overrightarrow{EZ} 를 한 변으로 하여 작도 하는 과정을 나타낸 것이다. 작도 순서로 옳은 것은?


- 1 C-7-2-0-0 27-C-0-2-0 3 O-2-0-1-0 4 7-0-0-2-0 5 7-0-0-2-0

- 9. 세 점 A,B,C 를 꼭짓점으로 하는 $\triangle ABC$ 에서 세 변을 써라.(정답 3 개)
 - ① 변AB ② 변BC ③ 변AD ④ 변CA ⑤ 변CD

해설

세 점 A,B,C 를 꼭짓점으로 하는 △ABC 에서의 세 변을 변 AB , 변 BC , 변 CA 라고 한다. **10.** 다음 그림에서 $\square ABCD \equiv \square EFGH$ 일 때, x + y 의 값은?


① 98 ② 100 ③ 102 ④ 104

⑤106

 $x = 95^{\circ}, \ y = 11 \text{ cm}$

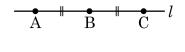
$$\therefore x + y = 95 + 11 = 106$$

11. 다음 그림과 같이 직선 AB 위에 점 C 가 있다. \overrightarrow{AB} , \overrightarrow{CB} 의 공통부분은?

해설 $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{CB}}$ 의 공통부분은 $\overrightarrow{\mathrm{AC}}$ 이다.

12. 네 점 A, B, C, D 가 다음 그림과 같이 있을 때, 이 점들로 결정되는 서로 다른 선분의 개수는 몇 개인지 구하여라.

D


▷ 정답: 6 <u>개</u>

한 직선 위에 존재하는 서로 다른 점 A,B,C 로 3 개의 선분이

답:

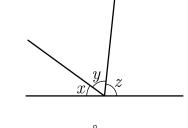
결정된다. $\overline{AB}, \overline{AC}, \overline{BC}, \overline{AD}, \overline{BD}, \overline{CD} \Rightarrow 6$ 개

13. 다음 그림과 같이 1 개의 직선 위에 세 점 A,B,C 가 있다. 길이가 서로 다른 선분의 개수는 모두 몇 개인가?

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

직선 l 위에 선분은 모두 \overline{AB} , \overline{BC} , \overline{AC} 이고, \overline{AB} = \overline{BC} 이므로

길이가 서로 다른 선분은 2 개이다.

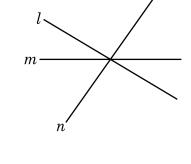

14. 다음 그림에서 $\overline{AP}=\overline{PQ},\ 3\overline{AP}=\overline{QB}$ 일 때, 다음 \square 안에 알맞은 수를 써 넣어라.

답:

➢ 정답: 5

 $\overline{AP} = \overline{PQ}, \ 3\overline{AP} = \overline{QB} \$ 이므로 $3\overline{PQ} = \overline{QB}$ $\therefore \overline{AB} = \overline{AQ} + \overline{QB} = 2\overline{PQ} + 3\overline{PQ} = 5\overline{PQ}$

15. 다음 그림에서 $\angle x : \angle y : \angle z = 3 : 5 : 7$ 일 때, $\angle y$ 의 크기를 구하여라.

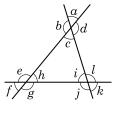


답:

▷ 정답: 60_°

 $\angle y = 180^{\circ} \times \frac{5}{15} = 60^{\circ}$

16. 다음 그림과 같이 세 직선 l, m, n 이 한 점에서 만날 때, 맞꼭지각은 모두 몇 쌍인가?



① 3 쌍 ② 6 쌍 ③ 8 쌍 ④ 9 쌍 ⑤ 12 쌍

(쌍)

직선의 개수가 3 개 이므로 맞꼭지각의 개수는 $3 \times (3-1) = 6$

17. 세 직선이 다음 그림과 같이 만날 때, 옳지 <u>않은</u> 것을 모두 골라라.

- ① ∠f 와 ∠h 는 맞꼭지각이다.⑥ ∠d 와 ∠i 는 엇각이다.
- © ∠a 와 ∠i 는 동위각이다.
- ② ∠c 와 ∠f 는 동위각이다.

▶ 답:

답:

▷ 정답: □

▷ 정답: ②

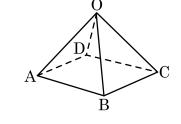
해설

© ∠a, ∠l: 동위각 ② ∠c, ∠g: 동위각

- **18.** 일직선상에 있지 않은 세 점 A, B, C 를 지나는 평면은 모두 몇 개 있는가?
 - ① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 무수히 많다.

일적선상에 있지 않은 세 점은 평면을 하나로 결정하는 조건이다. :. 1 개

- 19. 공간에 있는 두 직선의 위치관계에서 평행한 것은?
 - ① 한 직선에 수직인 서로 다른 두 직선
 ② 한 평면에 수직인 서로 다른 두 직선
 - ③ 한 평면에 평행한 서로 다른 두 직선
 - ④ 한 평면에 포함된 서로 다른 두 직선
 - ⑤ 공간에서 만나지 않는 두 직선


공간에 있는 두 직선의 위치관계에서 항상 평행한 경우는

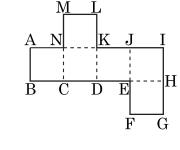
해설

i) 한 직선에 평행한 서로 다른 두 직선 ii) 한 평면에 수직인 서로 다른 두 직선

- | 11) 안 평면에 구작인 시도 나는 구 작산 | 두 가지 뿐이다.

20. 다음 그림과 같은 사면체에서 모서리 OA 와 만나지도 않고 평행하지 도 않은 모서리의 개수를 구하여라.

개

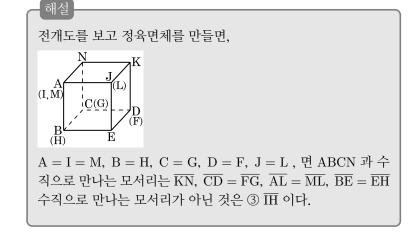

정답: 2 <u>개</u>

▶ 답:

모서리 OA 와 만나지도 않고 평행하지도 않은 모서리는 모서리

BC 와 CD , 총 2 개가 있다.

21. 다음 그림의 전개도로 만들어진 정육면체에 대하여 면 ABCN 과 수직으로 만나는 모서리가 <u>아닌</u> 것은?


③<u>IH</u>

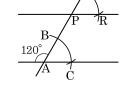
 $\overline{4}$ \overline{KN}

 $\odot \overline{CD}$

 \bigcirc $\overline{\mathrm{BE}}$

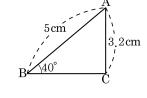
 $\odot \overline{FG}$

- **22.** 다음 작도에 대한 설명 중 옳지 <u>않은</u> 것은? (정답 2개)
 - ① 길이를 잴 때 자를 사용한다.
 - ② 선분을 연장할 때 눈금이 없는 자를 사용한다.
 - ③ 원을 그릴 때는 컴퍼스를 사용한다.④ 두 선분의 길이를 비교할 때는 컴퍼스를 사용한다.


 - ⑤ 두 점을 잇는 선분을 그릴 때 컴퍼스를 사용한다.

① 작도에서는 눈금 있는 자를 사용할 수 없으므로 길이를 잴 수

- │ 없다. │ ⑤ 두 점을 잇는 선분을 그릴 때는 눈금이 없는 자를 사용한다.

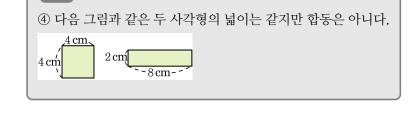

- 23. 다음은 크기가 같은 각의 작도법을 이용하여 \overrightarrow{AC} 와 평행한 \overrightarrow{PR} 를 작도한 것이다. $\angle QPR$ 의 크기는 얼마인가?
 - ① 40° ② 50° 4 70° ⑤ 80°
- ③60°

 $\angle QPR = \angle BAC = 180^{\circ} - 120^{\circ} = 60^{\circ}$

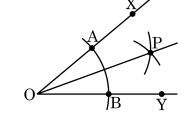
- **24.** 다음 중 그림의 △ABC에 대한 설명으로 옳지 <u>않은</u> 것을 모두 고르면?
 - ① ∠B의 대변은 AC이다.
 - ② AB의 대각은 ∠C이다.
 - ③ $\overline{\mathrm{AC}}$ 의 대각의 크기는 $40\,^{\circ}$ 이다.
 - $\boxed{4} \overline{AB} + \overline{BC} < \overline{AC}$
 - ⑤ ∠C의 대변의 길이는 3.2 cm 이다.

 $\textcircled{4} \overline{AB} + \overline{BC} > \overline{AC}$

⑤ ∠C의 대변은 AB이므로 5 cm이다.


- **25.** $\triangle ABC$ 에서 $\overline{AB}=5\,\mathrm{cm},\ \overline{BC}=12\,\mathrm{cm}$ 일 때, 나머지 한 변의 길이가 될 수 없는 것은?
 - ①7 cm ② 9 cm ③ 13 cm ④ 15 cm ⑤ 16 cm

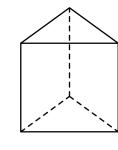
해설


한 변의 길이는 나머지 두 변의 길이의 합보다 작고, 차보다 커야 한다.

26. 도형의 합동에 대한 설명 중 옳지 <u>않은</u> 것은?

- 도형의 넓이가 서로 같다.
 대응각의 크기가 서로 같다.
- ③ 모양과 크기가 서로 같다.
- 넓이가 같은 두 사각형은 합동이다.
- ⑤ 넓이가 같은 두 원은 합동이다.

27. 다음 그림에서 \overrightarrow{OP} 가 $\angle XOY$ 의 이등분선이면 $\triangle AOP \equiv \triangle BOP$ 이다. 이때, 이용되는 삼각형의 합동조건을 써라.

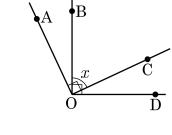

합동

 > 정답 :
 SAS합동

▶ 답:

 $\overline{OA} = \overline{OB}, \ \overline{OP}$ 는 공통

OP 가 ∠XOY 의 이등분선이므로 ∠AOP = ∠BOP 이다. 따라서 ΔAOP ≡ ΔBOP (SAS 합동)이다. **28.** 다음 그림과 같은 삼각기둥에서 교점의 개수를 a개, 교선의 개수를 b 개라고 할 때, a + b 의 값을 구하여라.


 답:
 개

 ▷ 정답:
 15 개

교점 a는 6개, 교선 b는 9개이다.

∴ a+b=6+9=15(7 H)

29. 다음 그림에서 $\angle AOC = \angle BOD = 90^{\circ}$, $\angle AOB + \angle COD = 50^{\circ}$ 일 때, $\angle x$ 의 크기를 구하여라.

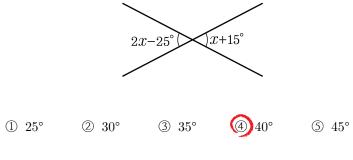
▷ 정답: 65_°

▶ 답:

 $\angle x + \angle AOB = 90^{\circ}, \ \angle x + \angle COD = 90^{\circ}$ 이므로 $\angle AOB = \angle COD$

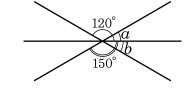
따라서 $\angle AOB = \angle COD = 25^{\circ}$, $\angle x + 25^{\circ} = 90^{\circ}$ 이므로 $\angle x = 65^{\circ}$ 이다.

30. 다음 그림에서 $\overline{\text{CO}}_{\perp}\overline{\text{DO}}$, $\angle \text{AOB} = \angle \text{BOC}$, $\angle \text{DOE} = \angle \text{EOF}$, $\angle \text{DOF} = 2\angle \text{AOC}$ 일 때, $\angle \text{AOB}$ 의 크기를 구하여라.


A O F

답:

정답: 15°


 $\angle AOC + \angle DOF = 3\angle AOC = 90^{\circ}, \angle AOC = 30^{\circ} \therefore \angle AOB = \frac{1}{2}\angle AOC = 15^{\circ}$

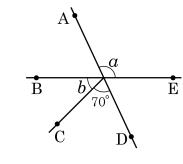
31. 다음 그림에서 $\angle x$ 의 크기는?

해설 $2x - 25^{\circ} = x + 15^{\circ}$ $\therefore \angle x = 40^{\circ}$

32. 다음 그림에서 $\angle b - \angle a$ 의 값을 구하여라.

 ▷ 정답:
 30 °

▶ 답:

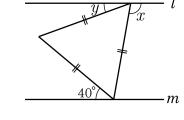

해설

○ SH • 30 _

(120°-a) + b + a = 180° 따라서 ∠b = 60°, ∠a = 30° 이므로

 $\angle b - \angle a = 30^{\circ}$ 이다.

33. 다음 그림에서 직선 AD 와 직선 BE 에 대하여 a-b 의 값을 구하여라.



▷ 정답: 70_°

▶ 답:

a = b + 70° 이므로 a − b = 70° 이다.

 ${f 34}$. 다음 그림에서 $l /\!/ m$ 이 각각 정삼각형의 한 꼭짓점을 지날 때, $\angle x - \angle y$ 의 크기는?

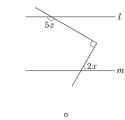
4 105°

⑤ 110°

① 80° ② 90° ③ 100°

정삼각형의 한 내각의 크기는 60° 이므로 $\angle x = 40^\circ + 60^\circ = 100^\circ$

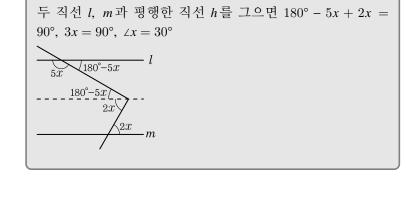
이다. 또한, $\angle y + 60^\circ + 100^\circ = 180^\circ$ 이므로 $\angle y = 20^\circ$ 이다. 따라서 $\angle x - \angle y = 80^{\circ}$ 이다.

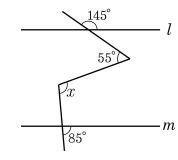

35. 다음 그림에서 $\overline{\mathrm{AB}} \, / \, \overline{\mathrm{CD}} \,$ 이고, $\overline{\mathrm{BC}} \, / \, \overline{\mathrm{DE}} \,$ 일 때, $2 \angle a - \angle b \,$ 의 크기를 구하여라.

▶ 답: ▷ 정답: 50°

해설

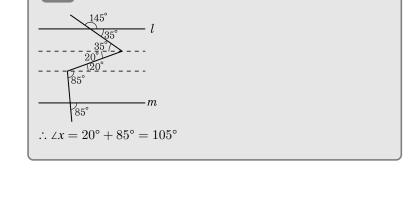
 $\overline{\mathrm{BC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 30°+∠a = 70°(동위각) ∴ ∠a = 40° 또, $\overline{\mathrm{BC}} / \! / \overline{\mathrm{DE}}$ 이므로 ∠b = 30°(엇각) $\therefore 2 \angle a - \angle b = 2 \times 40^{\circ} - 30^{\circ} = 50^{\circ}$

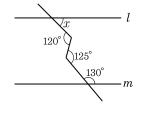

36. 다음 그림에서 l//m일 때, $\angle x$ 의 크기를 구하여라.


답:

해설

 ▶ 정답: 30°

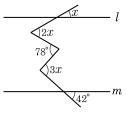

37. 다음 그림에서 $l \parallel m$ 일 때, $\angle x$ 의 크기를 구하여라.


▷ 정답: 105°

7 32 1 100_

▶ 답:

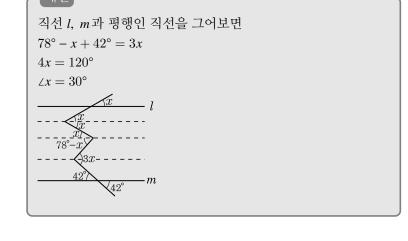
 $oldsymbol{38}$. 다음 그림에서 $l /\!\!/ m$ 일 때, $\angle x$ 의 값을 구하 여라.


▶ 답:

▷ 정답: 45°

해설

다음 그림과 같이 직선 l, m 에 평행하게 두 개의 보조선을 그어 주면, $\angle x = 45^{\circ}$ 가 된다.


39. 다음 그림에서 l//m 일 때, $\angle x$ 의 크기를 구하여라.

 ► 답:

 ▷ 정답:
 30°

00_

- 40. 공간에 있는 세 직선 *l*, *m*, *n* 과 세 평면 P, Q, R 에 대하여 다음 중 옳지 않은 것은?(단, 일치하는 경우와 포함되는 경우는 생각하지 않는다.)
 - ① l LP, m LP 이면 l // m 이다. ② l // m, l // n 이면 m // n 이다.
 - ③ P⊥Q, P∥R 이면 Q⊥R 이다.
 - ④P_LQ, Q_LR 이면 P_LR 이다.
 - ⑤ *l*_P, P // Q 이면 *l*_Q 이다.

④ P⊥Q, Q⊥R 이면 : 한가지로 결정되지 않는다.

해설

41. 다음 그림에서 (x+y) 와 (x-y) 의 차가 60° 일 때, $\angle x$, $\angle y$ 의 크기를 구하여라.

답:

▷ 정답: ∠x = 45_°

> 정답: ∠y = 30_°

답:

(x-y)+90° + (x+y)=180° 이므로 2x=90° , 즉 $\angle x=45$ °

해설

이다. 그런데 (x+y) 와 (x-y) 의 차가 60° 이므로

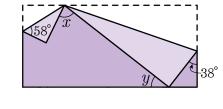
(x+y) - (x-y) = 60° = 2y 가 성립한다. 따라서 $\angle x = 45$ °, $\angle y = 30$ ° 이다.

42. 오후 2 시에서 오후 8 시까지 6 시간 동안 시계의 시침과 분침이 270° 를 이루는 것은 모두 몇 번인지 구하여라.

□ 답: <u>번</u>

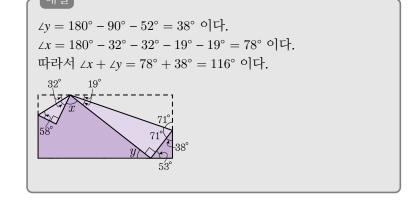
정답: 11번

V 01. 11<u>.</u>

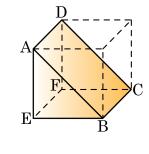

시침과 분침이 270° 를 이루는 것은 수직을 이루는 것과 같다.

해설

시계의 분침과 시침이 수직을 이루는 것은 1)2:00~2:59에 1번 있다. 2)3:00~3:59,4:00~4:59,5:00~5:59, 6:00~6:59,7:00~7:59 에 각각 2 번씩 있다.

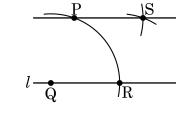

따라서 오후 2 시에서 오후 8 시까지 6 시간 동안 시침과 분침이 270° 를 이루는 것은 $1+2\times 5=11$ (번)이다.

43. 다음 그림에서 $\angle x + \angle y$ 의 크기를 구하여라.



▶ 답:

▷ 정답: 116 _°


44. 다음 그림은 정육면체를 평면 ABCD 로 잘랐을 때 남은 한 쪽이다. 면 ABCD 에 수직인 면의 개수는?

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 없다.

면 AEB, 면 DFC이므로 모두 2 개다.

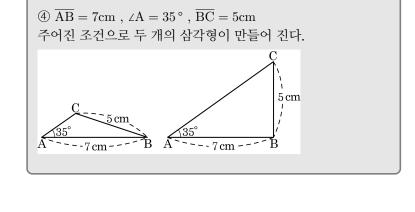
45. 그림은 점 P 를 지나고 직선 l 에 평행한 직선 PS 를 작도하는 과정을 나타낸 것이다. 사각형 PQRS 는 어떤 사각형인가?

① 정사각형

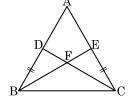
② 직사각형 ③ 사다리꼴

④ 마름모

⑤ 등변사다리꼴

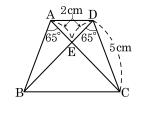

점 Q 를 중심으로 원을 그리므로 $\overline{\mathrm{QP}}=\overline{\mathrm{QR}}$,

점 P, R 을 중심으로 반지름이 같은 원을 그리므로 $\overline{\mathrm{QP}}=\overline{\mathrm{QR}}=$


 $\overline{\mathrm{PS}}=\overline{\mathrm{RS}}$, 네 변의 길이가 같은 사각형은 마름모이다.

46. 다음 중 삼각형이 결정되는 개수가 <u>다른</u> 것을 고르면?

- ① $\angle A = 50^{\circ}$, $\overline{AB} = 5 \text{cm}$, $\overline{AC} = 4 \text{cm}$ ② $\angle A = 60^{\circ}$, $\overline{BC} = 5 \text{cm}$, $\angle B = 55^{\circ}$
- ③ $\angle B = 60^{\circ}$, $\overline{BC} = 6 \text{cm}$, $\angle C = 55^{\circ}$
- $\boxed{4}\overline{AB}=7\mathrm{cm}$, $\angle A=35\,^{\circ}$, $\overline{BC}=5\mathrm{cm}$
- $\overline{AB} = 3cm, \ \overline{BC} = 4cm, \ \overline{AC} = 5cm$


47. 다음 그림의 정삼각형 ABC에서 $\overline{DB} = \overline{EC}$ 이다. ΔDFB 와 합동인 삼각형을 구하여라.

답:

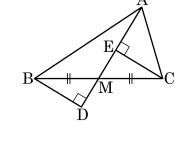
> 정답: △ EFC

△EFC와 ASA 합동이다.

해설

② 3 cm

③ 4 cm


45 cm

⑤ 6 cm

 $\overline{AE} = \overline{DE} = 2cm$ 이고,

 $\textcircled{1} \ 2\,\mathrm{cm}$

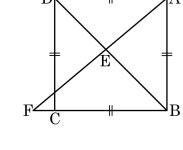
∠BAE = ∠CDE = 65°, ∠AEB = ∠DEC (맞꼭지각) 이다. 따라서 △ABE ≡ △DCE(ASA합동) 이고, ĀB = DC = 5 cm 이다. 49. 다음 그림의 $\triangle ABC$ 에서 \overline{BC} 의 중점을 M , 꼭짓점 B 와 C 에서 선분 AM 과 그 연장선에 내린 수선의 발을 각각 D,E 라고 하자. $\overline{AM} = a \text{cm}, \ \overline{BD} = b \text{cm}$ 일 때, $\triangle ACM$ 의 넓이를 a,b 를 사용한 식으로 나타내어라.

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $rac{1}{2}ab$ $m cm^2$

▶ 답:

 ΔBDM 과 ΔCEM 에서 $\overline{BM} = \overline{CM}$


∠DBM = ∠ECM (엇각) ∠BMD = ∠CME (맞꼭지각)

ZBMD = ZCME (맞꼭시각) ΔBDM ≡ ΔCEM (ASA 합동)

 \therefore $\overline{ ext{CE}}=\overline{ ext{BD}}=b(ext{cm})$ $ext{$\Delta$ACM}$ 의 넓이는 $\overline{ ext{AM}}$ 이 밑변이고 $\overline{ ext{CE}}$ 가 높이이므로

 $\triangle ACM = \frac{1}{2} \times a \times b = \frac{1}{2}ab(cm^2)$

 ${f 50}$. 다음 그림은 정사각형 ABCD 의 대각선 ${f BD}$ 위의 점 E 를 잡아 ${f AE}$ 의 연장선과 $\overline{\mathrm{BC}}$ 의 연장선의 교점을 F 라 한 것이다. $\angle\mathrm{AFC}=40^{\circ}$ 일 때, ∠BCE 의 크기를 구하여라.

▷ 정답: 50°

▶ 답:

 $\triangle AFB$ 에서 $\angle AFC = 40^{\circ}$ 이므로 $\angle FAB = 50^{\circ}$

해설

그런데 $\overline{AB} = \overline{CB}, \overline{EB}$ 는 공통, $\angle ABE = \angle CBE = 45^\circ$ $\triangle ABE \equiv \triangle CBE(SAS합동)$ 따라서 ∠BCE = ∠BAE = 50° 이다.