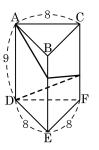
- 다음 그림과 같이 밑면의 넓이가 $100\pi\,\mathrm{cm}^2$ 1. 이고 모선의 길이가 15 cm 인 원뿔의 높이는?
 - 15cm ① $\sqrt{5}$ cm 25 cm
 - $35\sqrt{5}$ cm

- ④ 10 cm

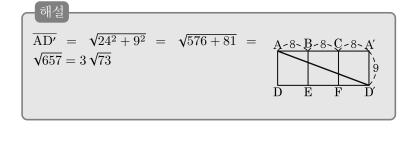
 \bigcirc 10 $\sqrt{5}$ cm

밑면의 넓이가 $\pi r^2=100\pi(\,\mathrm{cm}^2)$ 이므로 밑면의 반지름은 $10\,\mathrm{cm}$ 따라서 원뿔의 높이 $h=\sqrt{15^2-10^2}=5\,\sqrt{5}(\,\mathrm{cm})$ 이다.

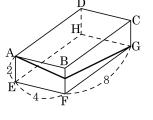
2. 다음 그림과 같은 삼각기둥의 꼭짓점 A 에서 출발 하여 모서리 BE, CF 를 순서대로 지나 꼭짓점 D 에 이르는 최단 거리를 구하여라.



답:> 정답: 3√73

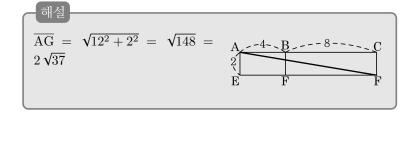


3. 다음 직육면체에서 꼭짓점 A 에서 모서리 BF를 거쳐 점 G에 이르는 최단거리를 구하여라.

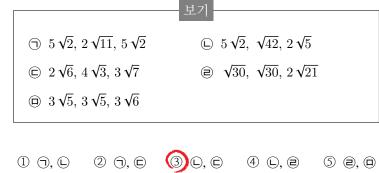


답:

➢ 정답: 2√37



4. 직육면체의 가로의 길이, 세로의 길이, 높이가 다음과 같을 때, 다음 중 직육면체의 대각선의 길이가 12 가 <u>아닌</u> 것은?



세 모서리가 각각 a, b, c 인 직육면체에서 대각선 $d = \sqrt{a^2 + b^2 + c^2}$ 이다.

해설

© $\sqrt{24+48+63} = \sqrt{135}$ © $\sqrt{30+30+84} = \sqrt{144}$

◎ √45 + 45 + 54 = √144
 따라서 12 가 아닌 것은 ⑥, ⑥이다.

11112

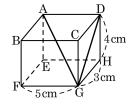
- 5. 밑면이 한 변의 길이가 x 인 정사각형이고 높이가 $\sqrt{23}$ 인 직육면체의 대각선의 길이가 11 이다. x 의 값은?
 - ① 5 ② 6 ③ 7 ④ 8 ⑤ 9

해설 직육면체의 대각선 길이는 $\sqrt{a^2+b^2+c^2}$ 이므로 $\sqrt{x^2 + x^2 + (\sqrt{23})^2} = 11$ $2x^2 = 98$

 $x^2 = 49$

x > 0 이므로 x = 7 이다.

그림과 같이 세 모서리의 길이가 각각 5 cm, 6. $3\,\mathrm{cm},\,4\,\mathrm{cm}$ 인 직육면체에서 $△\mathrm{AGD}$ 의 둘레 의 길이를 구하면?



 \bigcirc 12 cm

 $(10 + 5\sqrt{2}) \text{ cm}$ $(4) (10 + \sqrt{3}) \text{ cm}$

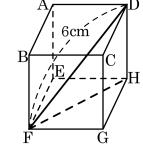
 $(3) (12 + 2\sqrt{2}) \text{ cm}$ ⑤ $(8 + 2\sqrt{3}) \text{ cm}$

 $\overline{AG} = \sqrt{5^2 + 3^2 + 4^2} = 5\sqrt{2} \text{ (cm)}$ $\overline{DG} = \sqrt{3^2 + 4^2} = 5 \text{ (cm)}$

 $\overline{\rm AD} = 5\,\rm cm$

따라서, 둘레의 길이는 $(10+5\sqrt{2})$ cm 이다.

다음 그림과 같이 대각선의 길이가 6cm 인 정육면체에서 ΔDHF 의 7. 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $6\sqrt{2}$ cm^2

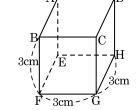
▶ 답:

정육면체의 대각선의 길이가 6cm 이므로 한 변의 길이는

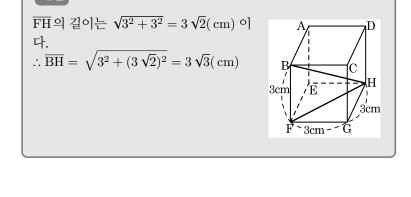
 $6 = \sqrt{3}a, a = 2\sqrt{3}$ (cm) 가 된다. $\overline{\mathrm{DH}} = 2\sqrt{3}(\mathrm{cm})$ $\triangle \mathrm{HFG}$ 에서 $\overline{\mathrm{FH}} = \sqrt{2}(2\sqrt{3}) = 2\sqrt{6}(\mathrm{cm})$

 $\triangle DHF = \frac{1}{2} \times \overline{FH} \times \overline{DH} = \frac{1}{2} \times 2\sqrt{6} \times 2\sqrt{3} = 2\sqrt{18} = 6\sqrt{2}(cm^2)$

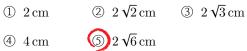
- 8. 다음 그림의 직육면체의 대각선의 길이는 몇 cm인가?



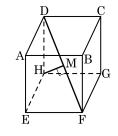
- ① $\sqrt{3}$ cm $3\sqrt{3}$ cm
- ② $2\sqrt{3}$ cm ④ $4\sqrt{3}$ cm
- ⑤ 3
- ,



다음 그림과 같이 한 모서리의 길이가 6 cm 인 9. 정육면체의 꼭짓점 H 에서 \overline{DF} 에 내린 수선 HM 의 길이는?



4 cm

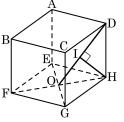


한 변의 길이가 $6\,\mathrm{cm}$ 인 정육면체의 대각선의 길이는 $\overline{\mathrm{DF}}$ = $\sqrt{6^2 + 6^2 + 6^2} = 6\sqrt{3}$ (cm) 한 변의 길이가 $6\,\mathrm{cm}$ 인 정사각형의 대각선의 길이는 $\overline{\mathrm{HF}}$ = $\sqrt{6^2 + 6^2} = 6\sqrt{2}$ (cm)

 $\therefore \triangle \mathrm{DHF} = \frac{1}{2}\overline{\mathrm{DH}} \cdot \overline{\mathrm{FH}} = \frac{1}{2}\overline{\mathrm{DF}} \cdot \overline{\mathrm{HM}}$ 즉, $\overline{\mathrm{DH}} \cdot \overline{\mathrm{FH}} = \overline{\mathrm{DF}} \cdot \overline{\mathrm{HM}}$ 이므로

 $6 \times 6 \sqrt{2} = 6 \sqrt{3} \times \overline{HM}$ $\therefore \overline{\mathrm{HM}} = 2\sqrt{6} (\mathrm{cm})$

10. 다음 그림과 같이 한 변의 길이가 $\sqrt{2}a$ 인 정육면체에서 밑면의 두 대각선의 교점이 O이고, 정육면체의 꼭짓점 H 에서 \overline{DO} 위로 수선을 내렸을 때, $\overline{\rm HI}$ 의 길이가 $\sqrt{3}$ 이었다. 이 정육면체의 한 변의 길이는?



①3 ② 5 ③ 7 ④ 9

⑤ 11

한 변의 길이를 $\sqrt{2}a$ 라고 하면

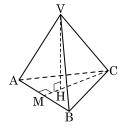
 $\overline{\mathrm{FH}} = 2a$ $\overline{OH} = a$

 $\overline{\text{DO}} = u$ $\overline{\text{DO}} = \sqrt{a^2 + (\sqrt{2}a)^2} = \sqrt{3}a$ 삼각형 DOH 의 넓이에서 $\sqrt{3}a \times \sqrt{3} = a \times \sqrt{2}a$

 $a = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$

 $\sqrt{2} \times \frac{3\sqrt{2}}{2} = 3$ 이다.

11. 부피가 $\sqrt{3}$ 인 정사면체 V – ABC 의 높이는?



① 2 4 ③ $2\sqrt{6}$ ④ $3\sqrt{6}$ ⑤ $4\sqrt{6}$

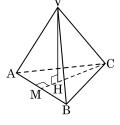
모서리의 길이가 a 인 정사면체에서 높이 : $h = \frac{\sqrt{6}}{3}a$, 부피 : $V = \frac{\sqrt{2}}{12}a^3$

$$V = \frac{\sqrt{2}}{3}a^3 = \sqrt{3}, \ a^3 = 6\sqrt{6} \ \therefore \ a$$

$$V = \frac{\sqrt{2}}{12}a^3 = \sqrt{3}, \ a^3 = 6\sqrt{6} \ \therefore \ a = \sqrt{6}$$

따라서 높이는 $\frac{\sqrt{6}}{3} \times \sqrt{6} = 2$ 이다.

 ${f 12}$. 다음 그림의 정사면체 ${f V}-{f ABC}$ 에서 높이 ${f \overline{VH}}$ 가 $2\sqrt{6}$ 일 때, 정사면체의 부피는?

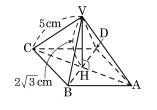


① 6 ② $6\sqrt{2}$ ③ 18 ④ $18\sqrt{2}$ ⑤ $32\sqrt{2}$

a 정사면체의 한 모서리의 길이를 a 라 하면, 정사면체의 높이 $\overline{\mathrm{VH}} = \frac{\sqrt{6}}{3} a = 2\sqrt{6}$ $\therefore a = 6$

따라서 정사면체의 부피는 $\frac{\sqrt{2}}{12}a^3 = \frac{\sqrt{2}}{12} \times 6^3 = 18\sqrt{2}$ 이다.

13. 다음 정사각뿔은 옆 모서리의 길이가 $5 \, \mathrm{cm}$, 높이가 $2\sqrt{3}\,\mathrm{cm}$ 이다. 밑면의 한 변의 길이 x 와 부피를 차례로 구하면?



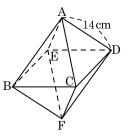
- ① $\sqrt{23}$ cm, $\frac{52\sqrt{3}}{3}$ cm³ ② $\sqrt{23}$ cm, $\frac{53\sqrt{3}}{3}$ cm³ ③ $\sqrt{26}$ cm, $\frac{53\sqrt{3}}{3}$ cm³ ④ $\sqrt{26}$ cm, $\frac{52\sqrt{3}}{3}$ cm³ ⑤ $\sqrt{29}$ cm, $\frac{52\sqrt{3}}{3}$ cm³

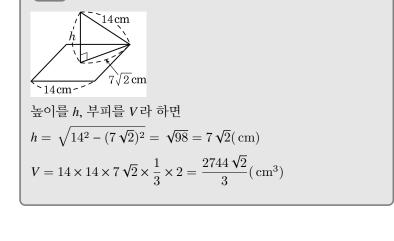
 $\overline{\text{CH}} = \sqrt{5^2 - (2\sqrt{3})^2} = \sqrt{25 - 12} = \sqrt{13}$ $\overline{AC} = 2\sqrt{13}$ $\overline{AB}^2 + \overline{BC}^2 = \overline{AC}^2$ 이므로
밑면의 한 변의 길이를 x 라 하면 $x^2 + x^2 = 52, \ 2x^2 = 52$ $x^2 = 26, \ \therefore \ x = \sqrt{26} \text{ cm}$

부피: $\sqrt{26} \times \sqrt{26} \times 2\sqrt{3} \times \frac{1}{3} = \frac{52\sqrt{3}}{3} (\text{cm}^3)$

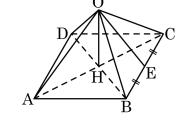
- 14. 다음 그림은 한 변의 길이가 $14 \, \mathrm{cm}$ 인 정삼 각형을 붙여 만든 정팔면체이다. 부피를 구 하면?

 - ① $\frac{2740\sqrt{2}}{3}(\text{cm}^3)$ ② $\frac{2741\sqrt{2}}{3}(\text{cm}^3)$ ③ $\frac{2743\sqrt{2}}{3}(\text{cm}^3)$ ④ $\frac{2744\sqrt{2}}{3}(\text{cm}^3)$ ⑤ $\frac{2746\sqrt{2}}{3}(\text{cm}^3)$





15. 다음 그림과 같이 밑면은 한 변의 길이가 $2\sqrt{2}$ cm 인 정사각형이고, 옆 면은 이등변 삼각형인 정사각뿔이다. 정사각뿔 O – ABCD의 높이가 $\sqrt{3}$ cm 일 때, 정사각뿔의 겉넓이는?



- ① $16\sqrt{3}$ cm² $4 16 \sqrt{2} \text{cm}^2$ $5 20 \text{cm}^2$
- ② $8\sqrt{10} + 4\text{cm}^2$
- $34\sqrt{10} + 8$ cm²

 $\overline{AC} = \sqrt{2} \times 2\sqrt{2} = 4(cm)$

 $\overline{\rm HE} = \frac{1}{2}\overline{\rm AB} = \sqrt{2}(\rm cm)$

 $\triangle \mathrm{OHE}$ 는 직각삼각형이므로 $\overline{\mathrm{OE}} = \sqrt{(\sqrt{2})^2 + (\sqrt{3})^2} =$

 $\sqrt{5}(\text{cm})$ 옆면의 이등변삼각형의 넓이는 $\frac{1}{2} \times 2\sqrt{2} \times \sqrt{5} = \sqrt{10} (\mathrm{cm}^2)$ 밑면의 넓이는 $2\sqrt{2} \times 2\sqrt{2} = 8(\text{cm}^2)$

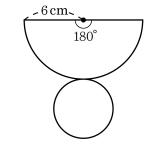
그러므로 정사각뿔의 겉넓이는 $4 \times \sqrt{10} + 8 = 4\sqrt{10} + 8 (\text{cm}^2)$

- 16. 다음 그림과 같이 모선의 길이가 $7 \, \mathrm{cm}$ 인 원뿔의 밑면의 둘레의 길이가 $10\pi\,\mathrm{cm}$ 일 때 이 원뿔의 높이는?
 - $\bigcirc 3 \, \mathrm{cm}$ \bigcirc 4 cm $4 3\sqrt{5} \, \mathrm{cm}$ $32\sqrt{6}\,\mathrm{cm}$
 - \bigcirc 6 cm

 $5\,\mathrm{cm}$ 이다. 따라서 원뿔의 높이는 $\sqrt{7^2-5^2}=2\,\sqrt{6}(\,\mathrm{cm})$ 이다.

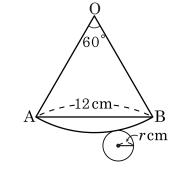
밑면의 둘레의 길이는 $2\pi r = 10\pi (\,\mathrm{cm})$ 이므로 밑면의 반지름은

17. 다음 그림과 같은 원뿔의 전개도를 보고 원뿔의 밑면의 반지름의 길이, 높이, 부피를 바르게 구한 것은?



- ① r = 2 cm, $h = 2\sqrt{3} \text{cm}$, $V = 6\sqrt{3}\pi \text{cm}^3$ ② r = 2 cm, $h = 3\sqrt{3} \text{cm}$, $V = 4\sqrt{3}\pi \text{cm}^3$
- ② r = 2 cm, $h = 3\sqrt{3} \text{cm}$, $V = 4\sqrt{3}\pi \text{cm}^3$ ③ r = 3 cm, $h = 2\sqrt{3} \text{cm}$, $V = 3\sqrt{3}\pi \text{cm}^3$
- ⑤ r = 4 cm, $h = 2\sqrt{3} \text{cm}$, $V = 6\sqrt{3}\pi \text{cm}^3$

및면의 반지름 $r=6\times\frac{180}{360}=3(\text{cm})$ 이다. 원뿔의 높이 $h=\sqrt{6^2-3^2}=3\sqrt{3}(\text{cm})$ 이다. 원뿔의 부피 $V=\frac{1}{3}\times9\pi\times3\sqrt{3}=9\sqrt{3}\pi(\text{cm}^3)$ 이다. 18. 다음 그림은 중심각의 크기가 60° 이고 $\overline{AB} = 12 \, \mathrm{cm}$ 인 부채꼴과 반지름이 rcm 인 원으로 만든 원뿔의 전개도이다. 다음 중 밑면의 반지름 길이와 높이를 바르게 말한 것은?



 $3 \text{ cm}, 2\sqrt{15} \text{ cm}$

① $2\,\mathrm{cm}$, $2\,\sqrt{15}\,\mathrm{cm}$

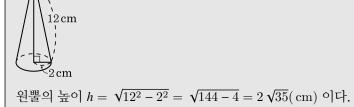
2 cm , $2 \sqrt{35} \text{ cm}$ 4 3 cm , $2\sqrt{35}$ cm

 \bigcirc 4 cm , $2\sqrt{15}$ cm

 $\angle AOB = 60^\circ$ 이고 \overline{OA} 와 \overline{OB} 는 부채꼴의 반지름이므로 $\overline{OA} =$ 따라서 $\angle OAB = \angle OBA = 60^{\circ}$ 즉, $\triangle OAB$ 는 정삼각형이므로 원뿔의 모선의 길이는 12 cm 이다.

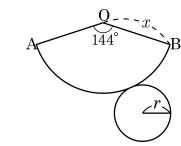
부채꼴 호 AB 의 길이 $l=2\pi\times12\times\frac{60^\circ}{360^\circ}=4\pi(\,\mathrm{cm})$ 호 AB 의 길이, 밑면의 둘레의 길이는 $2\pi r = 4\pi$ 이므로 밑면의

반지름의 길이 r = 2(cm) 이다. 위의 전개도로 다음과 같은 원뿔이 만들어진다.

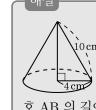


따라서 밑면의 반지름 길이는 $2\,\mathrm{cm}$ 이고, 높이는 $2\,\sqrt{35}\,\mathrm{cm}$ 이다.

19. 호 AB 의 길이는 $8\pi \, {\rm cm}$ 이고 중심각의 크기가 144° 인 원뿔의 전개도 가 있다. 이 원뿔의 부피는?

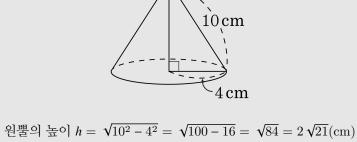


- ① $\frac{8\sqrt{3}}{3}\pi\text{cm}^3$ ② $\frac{8\sqrt{21}}{3}\pi\text{cm}^3$ ③ $\frac{16\sqrt{3}}{3}\pi\text{cm}^3$ ④ $\frac{16\sqrt{21}}{3}\pi\text{cm}^3$ ⑤ $\frac{32\sqrt{21}}{3}\pi\text{cm}^3$



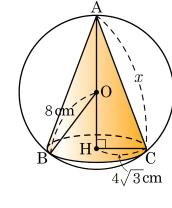
호 AB 의 길이, 밑면의 둘레의 길이가 $2\pi r = 8\pi$ 이므로 밑면의 반지름의 길이 $r = 4(\mathrm{cm})$ 이다. 부채꼴 호의 길이 $l=2\pi x imesrac{144^\circ}{360^\circ}=2\pi x imesrac{2}{5}=8\pi$ 이므로 부채

꼴의 반지름의 길이 x=10(cm)위의 전개도로 다음과 같은 원뿔이 만들어진다.



원뿔의 부피 $V = \frac{1}{3} \times 4 \times 4 \times \pi \times 2\sqrt{21} = \frac{32\sqrt{21}}{3}\pi(\mathrm{cm}^3)$ 이다.

20. 다음 그림과 같이 반지름의 길이가 $8 \, \mathrm{cm}$ 인 구 안에 꼭맞는 원뿔의 밑면의 반지름이 $4 \, \sqrt{3} \, \mathrm{cm}$ 일 때, 원뿔의 모선의 길이 x 를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 8√3 cm

답:

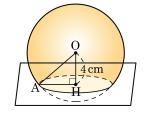
 $\triangle OHC \circlearrowleft A$ $\overline{OH} = \sqrt{8^2 - (4\sqrt{3})^2} = 4(\text{ cm})$ $\overline{AH} = 8 + 4 = 12(\text{ cm})$ $\triangle AHC \circlearrowleft A$ $x = \sqrt{12^2 + (4\sqrt{3})^2}$ $= \sqrt{144 + 48} = \sqrt{192 = 8}\sqrt{3}(\text{ cm})$

21. 반지름이 20cm 인 구를 어떤 평면으로 잘랐을 때, 단면인 원의 반지름이 12cm 이다. 이 평면과 구의 중심과의 거리는?

① 13cm ② 14cm ③ 15cm ④ 16cm ⑤ 17cm

행설 평면과 구의 중심과의 거리를 $d \, \mathrm{cm}$ 라 하면 $20^2 = d^2 + 12^2, \ d^2 = 256, \ ∴ \ d = 16 (\, \mathrm{cm})$

- 22. 다음 그림과 같이 \overline{OH} 의 길이가 $4\,\mathrm{cm}$ 가 되 도록 하여 구를 평면으로 잘랐을 때, 단면인 원의 넓이가 $48\pi\,\mathrm{cm}^2$ 이었다. 이때 구의 반 지름을 구하여라.
 - ②8 cm $310\,\mathrm{cm}$
 - \bigcirc 6 cm ④ 12 cm ⑤ 16 cm



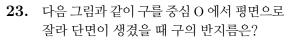
해설 원의 반지름의 길이를 r라 하면 단면인 원의 넓이가 $\pi r^2 =$

 $48\pi\,\mathrm{cm}^2$ 이므로 $r=4\sqrt{3}\,\mathrm{cm}$ 이다. $\angle AHO = 90$ ° 이므로 $\triangle AOH$ 에서 $\overline{OA}^2 = \overline{AH}^2 + \overline{OH}^2$ 이고

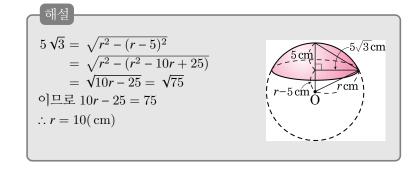
 \overline{OA} 를 R라 하면

 $R^2 = (4\sqrt{3})^2 + 4^2$

 $R^2 = 48 + 16 = 64 : R = 8 \text{ cm}$



① 8 cm ② 9 cm ③ 10 cm

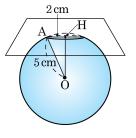


 $-5\sqrt{3}$ cm

_5<u>cm</u>

o

24. 다음 그림과 같이 반지름이 5cm 인 구를 어 떤 평면으로 잘랐을 때 단면인 원의 반지름 이 $2\,\mathrm{cm}$ 이다. 이 평면과 구의 중심과의 거 리는? $\bigcirc 3 \, \mathrm{cm}$



 $3\sqrt{22}\,\mathrm{cm}$

 \bigcirc 4 cm $\sqrt{21}$ cm

 $\bigcirc 2\sqrt{5}\,\mathrm{cm}$

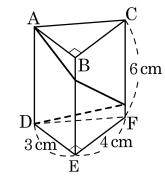
해설

 $\angle AHO = 90^{\circ}$ 이므로 $\triangle AOH$ 에서 $\overline{OA}^2 = \overline{AH}^2 + \overline{OH}^2$ 이고

 $\overline{OH} = x$ 라 하면 $25 = 4 + x^2$ $x^2 = 21$

 $\therefore x = \sqrt{21} (\text{cm})$

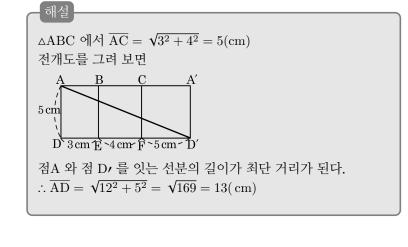
25. 다음 그림은 밑면이 직각삼각형인 삼각기둥이다. 꼭지점 A 에서 모서리 BE 와 CF 를 지나 꼭짓점 D 에 이르는 최단 거리는?



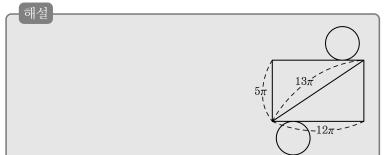
④ $13\sqrt{2}$ cm

 \bigcirc 12 cm

- ② $12\sqrt{2} \text{ cm}$ ③ 15 cm
- ③13 cm



- ${f 26}$. 원기둥에서 그림과 같은 경로를 따라 점 P 에서 점 ${f Q}$ 에 이르는 최단 거리를 구하면?
 - 13π
- ② 15π ③ 61π



따라서, 최단 거리는 직사각형(옆면)의 대각선의 길이와 같다. 직사각형의 가로의 길이는 밑면(원)의 둘레의 길이이므로 $2\pi \times$ $6 = 12\pi$ 이다. 따라서, 최단 거리는 $\sqrt{(5\pi)^2 + (12\pi)^2} = 13\pi$ 이다.

원기둥의 전개도를 그리면 다음과 같다.

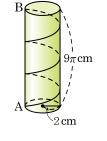
27. 다음 그림은 밑면의 반지름의 길이가 4 이고, 높이가 4π인 원통이다. 그림과 같이 A 에서 B 까지실로 원통을 한 바퀴 반 감아서 연결할 때, 실의길이의 최소값을 구하면?

① $8\sqrt{2}\pi$ ④ 8π

② 6π

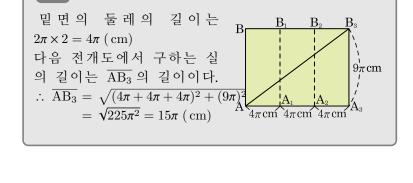
 310π

28. 다음 그림과 같이 밑면의 반지름의 길이가 2 cm, 높이가 9π cm 인 원기둥이 있다. 점 A 에서 점 B 까지 표면을 따라 세 바퀴 감았을 때, 실의 최소 길이를 구하여라.



정답: 15π cm

▶ 답:



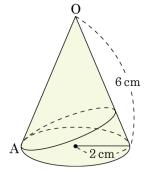
 $\underline{\mathrm{cm}}$

- 29. 다음 원기둥의 높이는 18 cm 이다. 점 M 은 높이의 중점이며, 그림과 같이 점 A 에서 출발하여 옆면을 따라 중점 M 을 지나 점 B 에 이르는 최단거리가 30 cm 이라 할 때, 및 밑면의 둘레의 길이를 구하면?
 - 및면의 둘레의 길이를 구하면?
 ① 11 cm ② 11.5 cm B
 ③ 12 cm ④ 12.5 cm

18 cm

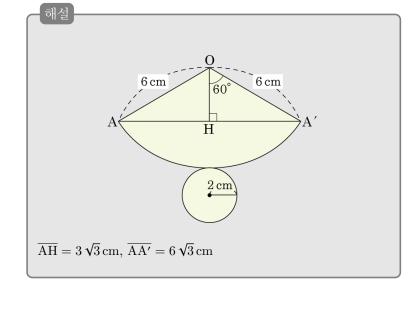
- ⑤ 13 cm
- $x = \sqrt{15^2 9^2} = \sqrt{144} = 12$ 따라서 밑면의 둘레의 길이는 12(cm) 시 18cm 시 15cm 9cm 15cm

30. 다음 그림과 같은 원뿔에서 점 A를 출발 하여 겉면을 따라 다시 점 A로 돌아오는 최단거리를 구하여라.

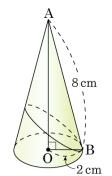


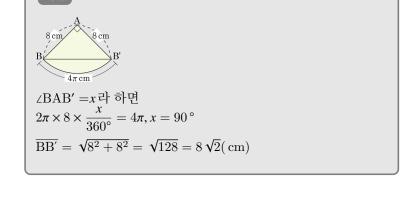
 ▶ 답:
 cm

 ▷ 정답:
 6√3 cm



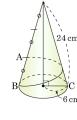
- ${f 31.}$ 다음 그림과 같은 원뿔에서 점 ${f B}$ 를 출발하여 옆면 을 지나 다시 점 B 로 돌아오는 최단 거리는?
 - ① $7\sqrt{2}$ cm ② $7\sqrt{3}$ cm $38\sqrt{2}\,\mathrm{cm}$
 - $4 8\sqrt{3} \, \mathrm{cm}$ $\bigcirc 9\sqrt{2}\,\mathrm{cm}$





32. 다음 그림은 모선의 길이가 $24\,\mathrm{cm}$ 이고, 반지름의 길이가 $6\,\mathrm{cm}$ 인원뿔이다. 점 B 에서부터 출발하여 모선 OC 를 거쳐 모선 OB 의 $\frac{1}{3}$ 지점인 A 까지 가는 최단거리를 구하여라.

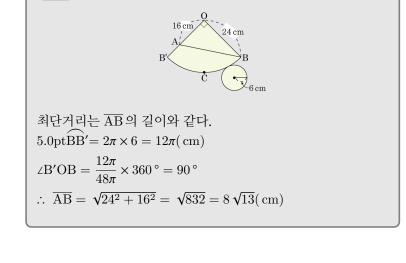
24 cm



 $\underline{\mathrm{cm}}$

> 정답: 8√13<u>cm</u>

▶ 답:



33. 직육면체의 세 모서리의 길이의 비가 1:2:3 이고 대각선의 길이가 $4\sqrt{14}$ 일 때, 이 직육면체의 모든 모서리의 길이의 합은?

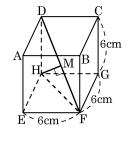
① 12 ② 24 ③ 36 ④ 72

직육면체의 세 모서리의 길이의 비가 1:2:3 이므로 세 변의 길이를 각각 k, 2k, 3k (k는 양의 실수)로 나타낼 수 있다. 대각선의 길이가 $4\sqrt{14}$ 이므로 $\sqrt{k^2 + (2k)^2 + (3k)^2} = 4\sqrt{14}$ $14k^2 = 224, k^2 = 16$ k > 0 이므로 k = 4

따라서 세 변의 길이는 4, 8, 12 이다.

따라서 이 직육면체의 모든 모서리의 길이의 합은 $4 \times (4 + 8 +$ 12) = 96 이다.

34. 다음 그림은 한 모서리의 길이가 6 cm 인 정육 면체이다. 점 H에서 대각선 DF에 내린 수선 의 발 M 까지의 거리를 구하여라.



 $\bigcirc 2\sqrt{6}\,\mathrm{cm} \qquad \qquad \bigcirc 6\sqrt{3}\,\mathrm{cm}$ (4) $6\sqrt{6}$ cm (5) $3\sqrt{6}$ cm

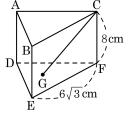
 $3 2\sqrt{5} \text{ cm}$

 $\overline{\text{HF}} = 6\sqrt{2}, \ \overline{\text{DF}} = \sqrt{6^2 + \left(6\sqrt{2}\right)^2} = 6\sqrt{3}$ $\triangle \mathrm{DHF} = \overline{\mathrm{DH}} imes \overline{\mathrm{HF}} imes \frac{1}{2} = \overline{\mathrm{DF}} imes \overline{\mathrm{HM}} imes \frac{1}{2}$ 이므로 $6 \times 6 \sqrt{2} \times \frac{1}{2} = 6 \sqrt{3} \times \overline{\text{HM}} \times \frac{1}{2}$ $18\sqrt{2} = 3\sqrt{3} \times \overline{HM}$ $\therefore \overline{HM} = \frac{6\sqrt{2}}{\sqrt{3}} = \frac{6\sqrt{6}}{3} = 2\sqrt{6} \text{ (cm)}$

$$\dots \Pi M = \frac{1}{\sqrt{3}} = \frac{1}{3} = 2 \text{ Vol (c)}$$

35. 다음 그림과 같이 밑면은 한 변의 길이가 6√3 cm 인 정삼각형이고, 높이가 8 cm 인 삼각기둥에서 밑면인 △DEF 의 무게중심을 G라 할 때, CG 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$



정답: 10 cm

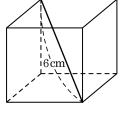
▶ 답:

 $\overline{FG} = \frac{2}{3} \times (\triangle DEF \stackrel{\triangle}{=} \stackrel{\triangle$

 $\overline{\text{CG}} = \sqrt{8^2 + 6^2} = 10 \text{ (cm)}$

 Δ CGF 는 \angle CFG = 90 ° 인 직각삼각형이므로

36. 다음 그림과 같이 대각선의 길이가 $6 \, \mathrm{cm}$ 인 정육면체의 부피 V를 구하여라.

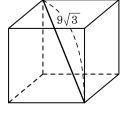


답: $\underline{\text{cm}^3}$ \triangleright 정답: $24\sqrt{3}\underline{\text{cm}^3}$

한 모서리의 길이를 a 라 하면

 $\sqrt{3}a = 6, \ a = 2\sqrt{3} \text{ (cm)}$ $\therefore \ V = (2\sqrt{3})^3 = 24\sqrt{3} \text{ (cm}^3)$

37. 다음 그림과 같이 대각선의 길이가 $9\sqrt{3}$ 인 정육면체의 부피 V 를 구하여라.

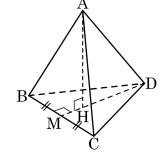


답:▷ 정답: 729

한 모서리의 길이를 *a* 라 하면

 $\sqrt{3}a = 9\sqrt{3}, a = 9$ \therefore V = 9³ = 729

38. 다음 그림은 한 모서리의 길이가 $12 {
m cm}$ 인 정사면체이다. 점 ${
m M}$ 은 $\overline{
m BC}$ 의 중점이고 $\overline{
m AH}$ 는 정사면체의 높이일 때, ${
m \triangle AMH}$ 의 넓이를 구하여라.



- $12\sqrt{2} \text{cm}^2$ (4) $15\sqrt{2}$ cm² (5) $16\sqrt{2}$ cm²
- ② $13\sqrt{2}$ cm²
- $3 14 \sqrt{2} \text{cm}^2$

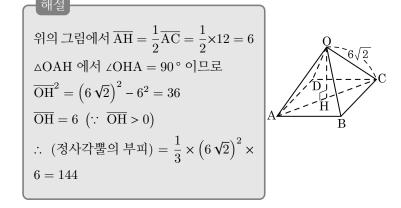
$$\overline{AH} = \frac{\sqrt{6}}{3} \times 12 = 4\sqrt{6} \text{ (cm)}$$

$$\overline{MH} = \frac{\sqrt{3}}{2} \times 12 \times \frac{1}{3} = 2\sqrt{3} \text{ (cm)}$$

$$(:. \triangle AMH의 넓이) = \frac{1}{2} \times 2\sqrt{3} \times 4\sqrt{6} = 12\sqrt{2}$$

- **39.** 모든 모서리의 길이가 $6\sqrt{2}$ 인 정사각뿔 O ABCD 의 부피를 구하여라.
 - ▶ 답:

▷ 정답: 144

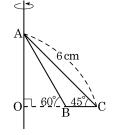


- 40. 다음 그림과 같은 $\triangle ABD$ 를 직선 AC를 축으로 하여 1 회전시킬 때 생기는 입체도형의 부피는?
 - ① $\frac{100}{3}\pi \,\mathrm{cm}^3$ ② $60\pi \,\mathrm{cm}^3$ ② $60\pi \,\mathrm{cm}^3$ ③ $\frac{200}{3}\pi \,\mathrm{cm}^3$ ④ $80\pi \,\mathrm{cm}^3$ ⑤ $\frac{400}{3}\pi \,\mathrm{cm}^3$

ΔABC 에서 $\overline{BC}^2 = \overline{AB}^2 - \overline{AC}^2$ 이므로 $\overline{BC} = \sqrt{13^2 - 12^2} = 5 \text{ (cm)}$ 이다. 따라서 입체도형의 부피는

$$\left(\frac{1}{3} \times \pi \times 5^2 \times 12\right) - \left(\frac{1}{3} \times \pi \times 5^2 \times 4\right)$$
$$= 100\pi - \frac{100}{3}\pi = \frac{200}{3}\pi \text{ (cm}^3) \text{ 이다.}$$

- 41. 다음 그림과 같은 $\triangle ABC$ 를 직선 l 을 회전축으로 하여 1 회전시켰을 때 생기는 입체도형의 부피를 구하면?
 - ① $4\sqrt{3}\pi \,\mathrm{cm}^3$ ② $6\sqrt{2}\pi\,{\rm cm}^{3}$ $4 12 \sqrt{3}\pi \, \text{cm}^3$
 - $\boxed{3}12\sqrt{2}\pi\,\mathrm{cm}^3$ ⑤ $24\sqrt{2}\pi\,\mathrm{cm}^3$

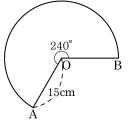


해설

 $\triangle \mathrm{AOC}$ 에서 $\overline{\mathrm{AO}}:\overline{\mathrm{CO}}:\overline{\mathrm{AC}}=1:1:\sqrt{2}$ 이므로 $\overline{\mathrm{AO}}:\overline{\mathrm{AC}}=1:$ $\sqrt{2},\,\overline{\mathrm{AO}}:6=1:\,\sqrt{2},\,\therefore\,\,\overline{\mathrm{AO}}=\overline{\mathrm{CO}}=3\,\sqrt{2}\;(\,\mathrm{cm})$ $\triangle AOB$ 에서 $\overline{AO}:\overline{BO}=\sqrt{3}:1$ $\therefore \ \overline{\mathrm{BO}} = \sqrt{6} \ (\mathrm{cm})$ 따라서 부피는 $\left(\frac{1}{3} \times \pi \times (3\sqrt{2})^2 \times 3\sqrt{2}\right)$ $-\left(\frac{1}{3}\times\pi\times(\sqrt{6})^2\times3\sqrt{2}\right)$

 $=18\sqrt{2}\pi-6\sqrt{2}\pi=12\sqrt{2}\pi$ (cm³) 이다.

42. 다음 그림과 같은 반지름의 길이가 $15 \, \mathrm{cm}$, 중심각의 크기가 240° 인 부채꼴로 밑면이 없는 원뿔을 만들 때, 이 원뿔의 높이를 구하 여라.



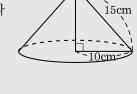
<mark>▷ 정답:</mark> 5√5<u>cm</u>

 $\underline{\mathrm{cm}}$

▶ 답:

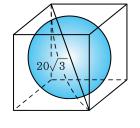
호 AB의 길이는 밑면의 원주의 길이와

같으므로 밑면의 반지름의 길이를 r이라 $2\pi \times 15 \times \frac{240^{\circ}}{360^{\circ}} = 2\pi r$



∴ r = 10(cm)
 ∴ (원뿔의 높이) = √15² - 10² = 5√5(cm)

43. 대각선 길이가 $20\sqrt{3}$ 인 정육면체 안에 꼭 맞 는 구가 있다. 이 구의 부피를 구하여라.



▶ 답:

ightharpoonup 정답: $rac{4000}{3}\pi$

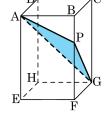
정육면체의 한 모서리의 길이를 a라고 하면

 $\sqrt{3}a = 20\sqrt{3}$ $\therefore a = 20$ (구의 반지름의 길이) = 10

 $(구의 부피) = \frac{4}{3}\pi \times 10^3 = \frac{4000}{3}\pi$

44. 다음 그림의 직육면체는 $\overline{AB} = 2 \, \mathrm{cm}$, $\overline{BC} = 1 \, \mathrm{cm}$, $\overline{AE} = 4 \, \mathrm{cm}$ 이고, \overline{AG} 는 직육면체의 대각선이다. 점 P 는 점 A 에서 G 까지 직육면체의 표면을 따라 갈 때 최단거리가 되게 하는 \overline{BF} 위의 점일 때, ΔPAG 의 둘레의 길이를 구하여라.

 $\underline{\mathrm{cm}}$



ightharpoonup 정답: $5+\sqrt{21}$ $\underline{\mathrm{cm}}$

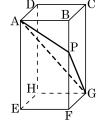
▶ 답:

해설

 $\overline{AP} + \overline{PG} = \sqrt{4^2 + 3^2} = 5$ (cm) 또, 대각선 $\overline{AG} = \sqrt{4 + 1 + 16} = \sqrt{21}$ (cm)

∴ (△APG의 둘레의 길이) = 5 + √21 (cm)

45. 다음 그림의 직육면체는 $\overline{AB} = 3\sqrt{3}$, $\overline{BC} = 2\sqrt{3}$, $\overline{AE} = 5$ 이고, \overline{AG} 는 직육면체의 대각선이다. 점 P 는 점 A 에서 G 까지 직육면체의 표면을 따라 갈 때 최단거리가 되게 하는 \overline{BF} 위의 점일 때, ΔPAG 의 둘레의 길이를 구하여라.



▷ 정답: 18

▶ 답:

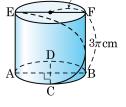
해설

 $\overline{AP} + \overline{PG} = \sqrt{(3\sqrt{3} + 2\sqrt{3})^2 + 5^2} = 10$

또, 대각선 $\overline{AG} = \sqrt{(3\sqrt{3})^2 + (2\sqrt{3})^2 + 5^2} = 8$: ($\triangle PAG$ 의 둘레의 길이) = 10 + 8 = 18

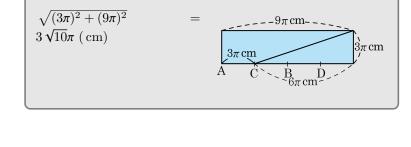
46. 다음 그림과 같이 밑면인 원의 반지름의 길이 6 cm 가 $6\,\mathrm{cm}$, 높이가 $3\pi\,\mathrm{cm}$ 인 원기둥에서 밑면의 지름 AB 와 수직인 지름 CD 에 대하여 점 C 에서 점 E 까지 원기둥의 옆면을 따라 오른쪽 으로 올라갈 때의 최단 거리를 구하여라. (단, $\overline{\rm AB}\,/\!/\,\overline{\rm EF})$

 $\underline{\mathrm{cm}}$

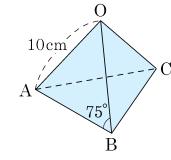


ightharpoonup 정답: $3\sqrt{10}\pi$ $\underline{\mathrm{cm}}$

▶ 답:

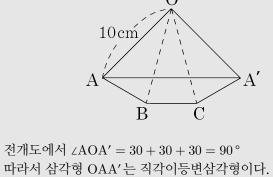


47. 그림과 같이 $\overline{OA} = \overline{OB} = \overline{OC} = 10 \text{cm}$, $\overline{AB} = \overline{BC} = \overline{CA}$, $\angle OBA = 75$ °인 삼각뿔이 있다. 이 삼각뿔의 꼭짓점 A 에서 출발하여 겉면을 따라 $\overline{OB} = \overline{OC}$ 를 지나 다시 꼭짓점 A 에 이르는 최단 거리는?



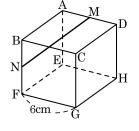
- ① 10cm ④ 15cm
- ② 10 √2cm ⑤ 20cm
- $3 10 \sqrt{3} \text{cm}$
- _

삼각형 OAB는 이등변삼각형이고 \angle OBA = 75 ° 이므로 \angle AOB = 180 - (75 + 75) = 30 °



최단거리는 $\sqrt{10^2+10^2}=10\sqrt{2}\mathrm{cm}$ 이다.

48. 다음 그림과 같이 한 모서리의 길이가 $6\,\mathrm{cm}$ 인 정육면체에서 $\overline{\mathrm{AD}}$, $\overline{\mathrm{BF}}$ 의 중점을 각각 M, N 이라 할 때, $\overline{\text{MN}}$ 의 길이를 구하여라.



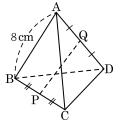
▷ 정답: 3√6 cm

 $\underline{\mathrm{cm}}$

▶ 답:

 $\triangle ANM$ 은 $\angle NAM = 90$ ° 인 직각삼각형 $\overline{MN}^2 = \overline{AN}^2 + \overline{AM}^2$ $= \overline{AB}^{2} + \overline{BN}^{2} + \overline{AM}^{2}$ $= 6^{2} + 3^{2} + 3^{2} = 54$ $\therefore \overline{MN} = 3\sqrt{6} \text{ (cm)}$

49. 다음 그림과 같이 한 모서리의 길이가 $8 \, \mathrm{cm}$ 인 정사면체에서 \overline{BC} , \overline{AD} 의 중점을 각각 P, Q 라 할 때, \overline{PQ} 의 길이를 구하여라.



ightharpoonup 정답: $4\sqrt{2}$ $\underline{\mathrm{cm}}$

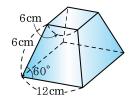
▶ 답:

$\overline{\mathrm{AP}}$ 와 $\overline{\mathrm{PD}}$ 는 정삼각형 ABC 와 DBC 의 높이이므로

 $\overline{AP} = \overline{PD} = \sqrt{8^2 - 4^2} = 4\sqrt{3} \text{ (cm)}$ 따라서 △APQ 에서 $\overline{PQ} = \sqrt{(4\sqrt{3})^2 - 4^2} = 4\sqrt{2} \text{ (cm)}$

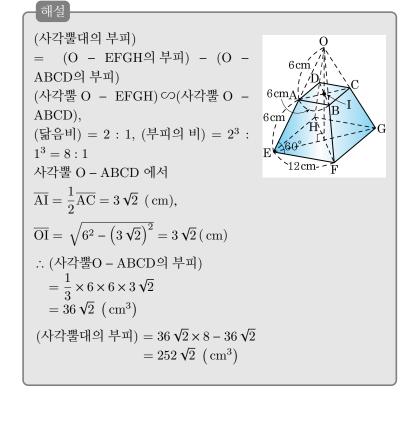
 $\underline{\mathrm{cm}}$

50. 다음 그림과 같이 밑면이 모두 정사각형이고 옆면이 모두 합동인 사각뿔대의 부피를 구하 여라.



> 정답: 252 √2 cm³

▶ 답:



 $\underline{\mathrm{cm}^3}$