- 이차함수 $y = -x^2 + 4x$ 의 최댓값 또는 최솟값과 그 때의 x 의 값은? 1.
 - ① x = 2 일 때, 최댓값은 4 ② x = -2 일 때, 최댓값은 4
 - ③ x = 4 일 때, 최댓값은 4 ④ x = 2 일 때, 최솟값은 4
 - ⑤ x = 4 일 때, 최솟값은 0

 $y = -x^{2} + 4x$ $= -(x-2)^{2} + 4$ 따라서 x=2 일 때, 최댓값 4를 갖는다.

 ${\bf 2.}$ 이차함수 $y=-x^2+10x-13$ 의 최댓값을 m , 이차함수 $y=\frac{1}{2}x^2+x+1$ 의 최솟값을 n 이라고 할 때, mn 의 값을 구하여라.

▶ 답: ▷ 정답: 6

 $y = -x^2 + 10x - 13 = -(x - 5)^2 + 12$ 최댓값 m = 12

リース版 m = 12 $y = \frac{1}{2}x^2 + x + 1 = \frac{1}{2}(x+1)^2 + \frac{1}{2}$ 対会값 $n = \frac{1}{2}$ $\therefore mn = 12 \times \frac{1}{2} = 6$

- 이차함수 $y = 2x^2 6x + 5(2 \le x \le 5)$ 의 최댓값을 a, 최솟값을 b라 할 **3.** 때, *ab* 의 값을 구하면?
 - **(5)** 25 ① 1 ② 4 ③ 9 ④ 16

 $y = 2x^2 - 6x + 5 = 2\left(x^2 - 3x + \frac{9}{4} - \frac{9}{4}\right) + 5$

$$=2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}$$
이므로

꼭짓점의 좌표는 $\left(\frac{3}{2}, \frac{1}{2}\right)$ 이고

아래로 볼록한 포물선이다. 꼭짓점이 주어진 구간 안에 포함되지 않으므로 최댓값, 최솟값은 주어진 구간의 양끝값이 된다.

x = 2일 때 $y = 2\left(2 - \frac{3}{2}\right)^2 + \frac{1}{2} = 1$

$$x=5$$
일 때 $y=2\left(5-\frac{3}{2}\right)^2+\frac{1}{2}=25$
따라서 최댓값 $a=25$ 이고, 최솟값 $b=1$ 이므로 $ab=25$

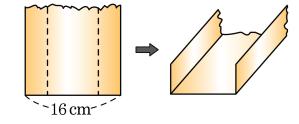
- 이차함수 $y = 2x^2 2ax 2a 4$ 의 최솟값을 m 이라고 할 때, m 의 4. 최댓값을 구하여라.
 - ▶ 답:

▷ 정답: -2

 $y = 2x^{2} - 2ax - 2a - 4$ $= 2\left(x - \frac{a}{2}\right)^{2} - \frac{a^{2}}{2} - 2a - 4$ $y 의 최숙값: m = -\frac{a^{2}}{2} - 2a - 4$ $= -\frac{1}{2}(a+2)^{2} - 2$

m 의 최댓값 : −2

5. 다음 그림과 같이 너비가 16cm 인 철판의 양쪽을 접어 직사각형인 물받이를 만들었다. 단면의 넓이를 최대가 되게 하는 높이를 구하여라.



▶ 답: $\underline{\mathrm{cm}}$ ▷ 정답: 4<u>cm</u>

높이를 xcm, 넓이를 ycm 2 라고 두면

해설

y = x(16 - 2x) $= -2x^2 + 16x$

 $= -2(x^2 - 8x + 16) + 32$ $= -2(x-4)^2 + 32 \text{ old.}$

따라서 x = 4 일 때, 최댓값 32 를 가진다.

- **6.** 직선 $\frac{x}{2} + \frac{y}{3} = 1$ 위를 움직이는 한 점 P 가 있다. 점 P 에서 $x \stackrel{?}{\Rightarrow}, y \stackrel{?}{\Rightarrow}$ 위에 내린 수선의 발을 각각 Q, R 라고 할 때, 직사각형 OQPR의 넓이의 최댓값을 구하여라. (단, 점 P 는 제 1 사분면 위에 있다.)

ightharpoonup 정답: $rac{3}{2}$

직선의 방정식은 $y = -\frac{3}{2}x + 3$ 이므로 점 P 의 좌표를 (a, b) 로 놓으면 $b = -\frac{3}{2}a + 3$

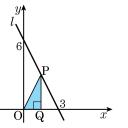
$$\Box OQPR = ab = a\left(-\frac{3}{2}a + 3\right)$$

$$= -\frac{3}{2}a^2 + 3a$$

$$= -\frac{3}{2}(a - 1)^2 + \frac{3}{2}$$
한편, 점 P 는 제 1 사분면 위의 점이므로

 $a > 0, \ b = -\frac{3}{2}a + 3 > 0$: 0 < a < 2따라서 $\square OQPR$ 의 넓이는 a=1 일 때, 최댓값 $\frac{3}{2}$ 을 갖는다.

7. 다음 그림과 같이 직선 l 위를 움직이는 점 P가 있다. x 축 위에 내린 수선의 발을 $\mathbb Q$ 라고 할 때, ΔPOQ 의 넓이의 최댓값을 구하여라. (단, 점 P는 제 1 사분면 위에 있다.)



▶ 답:

ightharpoonup 정답: $rac{9}{4}$

직선 l은 두 점 (3, 0), (0, 6)을 지나므로

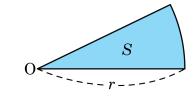
y = -2x + 6점 P 의 좌표를 (a, b) 로 놓으면 b = -2a + 6

$$\Delta POQ = \frac{1}{2}ab = \frac{1}{2}a(-2a+6)$$

= $-a^2 + 3a$
= $-\left(a - \frac{3}{2}\right)^2 + \frac{9}{4}$
한편, 점 P 는 제 1사분면 위의 점이도

한편, 점 P 는 제 1사분면 위의 점이므로 $a>0,\ b=-2a+6>0$ $\therefore \ 0< a<3$ 따라서 ΔPOQ 의 넓이는 $a=\frac{3}{2}$ 일 때, 최댓값 $\frac{9}{4}$ 를 갖는다.

- 둘레의 길이가 $12 \mathrm{cm}$ 인 부채꼴의 반지름의 길이가 $r \mathrm{cm}$ 일 때, 넓이를 8. $S \text{ cm}^2$ 라고 한다. S 가 최대일 때, r 의 값은? (단, 반지름의 길이가 r, 호의 길이가 l 인 부채꼴의 넓이는 $\frac{1}{2}lr$ 임을 이용하여라.)



①3

② 6 ③ 7 ④ 9

⑤ 10

둘레의 길이가 $12 \mathrm{cm}$ 인 부채꼴의 반지름을 $r \mathrm{cm}$ 이라 하면 호의

길이는 (12-2r) cm 이다. (부채꼴의 넓이) = $\frac{1}{2}r(12-2r) = -r^2 + 6r$

 $= -(r-3)^2 + 9$ 따라서 r=3 일 때, 부채꼴의 최대의 넓이는 9 이다.

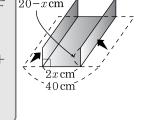
9. 너비가 $40 \, \mathrm{cm}$ 인 철판의 양쪽을 접어 단면이 직사각형인 물받이를 만들려고 한다. 단면의 넓이가 최대가 될 때, 높이를 구하면?

①10 ② 8 ③ 6 ④ 4 ⑤ 2

직사각형의 가로를 2x 라 하면 세로는 20-x이다. 단면의 넓이는 $2x(20-x) = -2x^2 + 40x = -2(x^2 - 20x + 40x)$

200) + 100 = -2(x - 10)² + 200 ∴ x = 10 일 때 넓이가 최대이다.

∴ x = 10 일 때 넓이가 최대이다



- 10. 지상에서 초속 $50 \mathrm{m}$ 의 속력으로 쏘아 올린 공의 t 초 후의 높이는 $(50t - 5t^2)$ m 이다. 이 공의 높이가 지상으로부터 최대가 되는 것은 쏘아 올린지 몇 초 후인가?
 - ① 5 초후 ② 7 초후 ③ 8 초후
 - ④ 10 초 후 ⑤ 알 수 없다.

 $y = 50t - 5t^2$ $y = -5(t^2 - 10t + 25 - 25) = -5(t - 5)^2 + 125$

해설

따라서 5 초 후에 최고 높이 125m 가 된다.