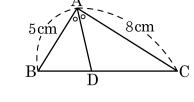
- 다음 그림의 △ABC 에서 ∠DAB = 1. \angle ACB , \angle DAE = \angle CAE 일 때, x 의 값을 구하면?
 - 20cm ① 6 cm $\ensuremath{\bigcirc} 7\,\mathrm{cm}$
 - $38 \, \mathrm{cm}$ $9 \, \mathrm{cm}$
 - \bigcirc 10 cm


해설

 $\angle B$ 는 공통, $\angle BAD = \angle BCA$.: $\triangle ABD$ \hookrightarrow $\triangle CBA$ (AA 닮음) 닮음비로 \overline{AB} : \overline{BC} = \overline{AD} : \overline{CA} 에서 12 : 24 = \overline{AD} : 20

 $\therefore \overline{\rm AD} = 10 (\, \rm cm)$ $\triangle ADC$ 에서 \overline{AE} 는 $\angle CAD$ 의 이등분선이므로 10:20=x:(18 - x)

 $\therefore x = 6(\text{cm})$

다음 그림과 같은 $\triangle ABC$ 에서 $\angle A$ 의 이등분선과 \overline{BC} 의 교점을 D 라한다. $\triangle ABC$ 의 넓이가 $169 \mathrm{cm}^2$ 이고, $\overline{AB}=5 \mathrm{cm}$, $\overline{AC}=8 \mathrm{cm}$ 일 때, **2.** △ABD 의 넓이를 구하여라.

 $\underline{\rm cm^2}$ ▶ 답: ▷ 정답: 65 cm²

 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}=5:8$ 이므로

 $\triangle ABD : \triangle ADC = 5 : 8$ $\triangle ABD = \frac{5}{13} \triangle ABC = \frac{5}{13} \times 169 = 65 (cm^2)$

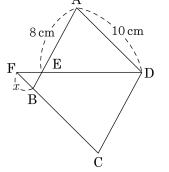
3. 다음과 같이 $\overline{AB} = 7$ cm, $\overline{DC} = 14$ cm 이고 $\overline{AB},\overline{PH},\overline{DC}$ 는 모두 \overline{BC} 와 수직일 때, \overline{PH} 의 길이를 구하여라.

BN 7cm

▶ 답:

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $rac{14}{3}$ m cm


 $\overline{AB}:\overline{DC}=\overline{AP}:\overline{CP}=1:2$ 이므로

해설

 $\overline{BC}:\overline{CH}=3:2$

 $\overline{BC} : \overline{CH} = \overline{AB} : \overline{PH}$ $3 : 2 = 7 : \overline{PH}$ $\therefore \overline{PH} = \frac{14}{3} \text{ cm}$

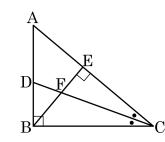
다음 그림과 같은 마름모 ABCD에서 4. $\overline{
m DE}$ 의 연장선과 $\overline{
m BC}$ 의 연장선이 만나 는 점을 F라 할 때, x의 길이를 구하여 라..

답:

ightharpoonup 정답: $rac{5}{2}\,\mathrm{cm}$

해설 △EAD와 △EBF에서

∠AED = ∠BEF(맞꼭지각) $\angle EDA = \angle EFB(엇각)$ 이므로 △EAD ∽ △EBF(AA 닮음)

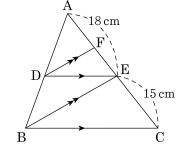

마름모이므로

 $\overline{AB} = \overline{AD} = 10 (\text{cm})$ 이코 $\overline{EB} = 10 - 8 = 2 (\text{cm})$

또한, \overline{AE} : $\overline{BE} = \overline{AD}$: \overline{BF} 이므로

8: 2 = 10: x $\therefore x = \frac{5}{2} \text{ (cm)}$

다음 그림에서 $\angle A=30$ °일 때, $\angle BFD$ 의 크기와 크기가 같은 각은? **5.**

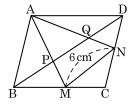


- ④60°, ∠BDC
- ① 55° , $\angle ADC$ ② 50° , $\angle EBC$ ⑤ 70°, ∠ABE
- ③ 65°, ∠BAC

 ${\it \angle} BFD = {\it \angle} CFE = 180\,^{\circ} - \left({\it \angle} FEC + {\it \angle} FCE\right) = 180\,^{\circ} - \left({\it \angle} DBC + {\it \angle} FCE\right) = 180\,^{\circ} - \left({\it \angle} DBC + {\it \angle} FCE\right) = 180\,^{\circ} - \left({\it \angle} DBC\right) = 180\,^{\circ} - \left($

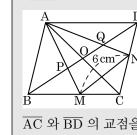
 $\angle DCB) = \angle BDC = 60^{\circ}$

다음 그림에서 $\overline{
m BC}//\overline{
m DE}$, $\overline{
m BE}//\overline{
m DF}$ 일 때, $\overline{
m EF}$ 의 길이를 구하여라. 6.


답:

ightharpoonup 정답: $\frac{90}{11}\,\mathrm{cm}$

 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{ADE}$ \hookrightarrow $\triangle\mathrm{ABC}(AA$ 닮음) 즉, $\overline{\mathrm{AD}}:\overline{\mathrm{DB}}=18:15=6:5$


 $\overline{\mathrm{BE}}//\overline{\mathrm{DF}}$ 이므로 $\triangle \mathrm{ADF}$ \hookrightarrow $\triangle \mathrm{ABE}(AA$ 닮음) 즉, $\overline{\mathrm{AF}}:\overline{\mathrm{FE}}=\overline{\mathrm{AD}}:\overline{\mathrm{DB}}=6:5$ $\therefore \overline{\mathrm{EF}}=18\times\frac{5}{11}=\frac{90}{11}(\mathrm{\,cm})$

7. 다음 그림과 같은 평행사변형 ABCD 에서 점 M,N 은 각각 $\overline{BC},\overline{DC}$ 의 중점이다. $\overline{MN}=$ $6 \mathrm{cm}$ 일 때, $\overline{\mathrm{PQ}}$ 의 길이를 구하여라.

▷ 정답: 4<u>cm</u>

답:

 \overline{AC} 와 \overline{BD} 의 교점을 O 라고 하면 $\overline{AO}=\overline{CO}$ 이다. $\triangle ABC$ 에서 $\overline{AM},\overline{BO}$ 는 중선이므로 점P 는 무게중심이다. $\overline{PO} = \frac{1}{3}\overline{BO} \, \cdots \bigcirc$

 $\underline{\mathrm{cm}}$

 $\overline{\mathrm{QO}} = \frac{1}{3}\overline{\mathrm{DO}}\cdots \bigcirc$

$$\triangle BCD$$
 에서 $\overline{BD} = 2\overline{MN} \cdots$ \bigcirc \bigcirc , \bigcirc , \bigcirc 에서

 $\therefore \overline{PQ} = \frac{1}{3}\overline{BD} = \frac{1}{3} \times 2\overline{MN} = \frac{1}{3} \times 2 \times 6 = 4(cm)$