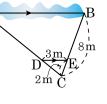

1. 다음 그림에서 \overline{AD} $/\!/ \overline{EF}$ $/\!/ \overline{BC}$ 일 때, \overline{EP} – \overline{PF} 의 값을 구하여라.



$$\triangleright$$
 정답: $\frac{3}{2}$

$$10 : 16 = \overline{EP} : 12 : \overline{EP} = \frac{15}{2}$$

6:
$$16 = \overline{PF}$$
: 16 \therefore $\overline{PF} = 6$
 \therefore $\overline{EP} - \overline{PF} = \frac{15}{2} - 6 = \frac{3}{2}$

하려고 측량한 것이다. 이때, A, B 사이의 거리를 구하여라.

답:▷ 정답: 12 m

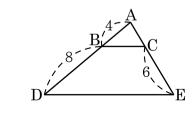
△ABC ∽ △DEC 이고 닮음비가 4 : 1 이다.

 \mathbf{m}

다음 그림은 두 점 A 와 B 사이의 거리를 구

 $4: 1 = \overline{AB}: 3$ $\therefore \overline{AB} = 12(m)$

3. 다음 그림과 같이 직각삼각형의 세 변을 각 각 한 변으로 하는 정사각형을 그렸을 때, □BHIC 의 넓이는? ① 324 ② 320 ③ 289


(5) 240

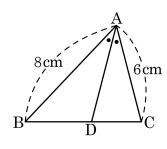
(4) 225

해설 $\overline{\mathrm{CB}} = 17$ 이므로 사각형 BHIC 의 넓이는 $17 \times 17 = 289$ 이다. **4.** 세 변의 길이가 (x+3) cm , (x-1) cm , (x-5) cm 인 삼각형이 직각삼각형이 되는 x 의 값은?

$$(x+3)^2 = (x-1)^2 + (x-5)^2$$

 $x^2 + 6x + 9 = x^2 - 2x + 1 + x^2 - 10x + 25$
 $x^2 - 18x + 17 = 0$, $(x-1)(x-17) = 0$
따라서 $x = 1$ 또는 $x = 17$
 $x > 5$ 이므로 $x = 17$

5. 다음 그림에서 $\overline{
m BC}$ $/\!/\,\overline{
m DE}$ 가 되도록 하려면 $\overline{
m AC}$ 의 길이는 얼마로 정하여야 하는가?



$$\overline{\mathrm{BC}}\,/\!/\,\overline{\mathrm{DE}}$$
 가 되려면 $\overline{\mathrm{AB}}$: $\overline{\mathrm{BD}}$ $=$ $\overline{\mathrm{AC}}$: $\overline{\mathrm{CE}}$ 이다.

4:8=x:6

8x = 24 $\therefore x = 3$

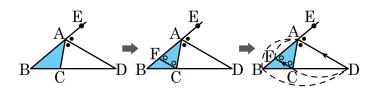
6. △ABC 에서 ∠A 의 이등분선과 변 BC 의 교점을 D 라 할 때, △ABD 의 넓이가 28cm² 이면, △ADC 의 넓이는?

① 14cm² ④ 24cm² ② 18cm²

 \bigcirc 49cm²

 $21 \mathrm{cm}^2$

해설


 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{DC}$ 이므로

 $\overline{\mathrm{BD}}:\overline{\mathrm{DC}}=4:3$

따라서 \triangle ABD 와 \triangle ADC 의 넓이의 비는 4:3 이다. \triangle ADC의 넓이를 x라 하면 4:3=28:x이므로 $x=21(\text{cm}^2)$ 이다.

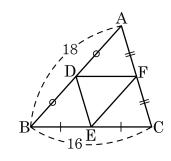
따라서 △ADC의 넓이는 21 cm² 이다.

7. 다음은 삼각형의 외각의 이등분선으로 생기는 선분의 비를 구하는 과정이다. 빈칸에 알맞은 말을 차례대로 나열하면?

AD 는 ∠A의 외각의 이등분선

 $\angle ACF = \bigcirc$ 이므로 $\triangle ACF$ 는 이등변삼각형 $\overline{AD} / / \overline{FC}$ 에서 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{C}$

① $\angle ACD$, \overline{BC} ② $\angle ACD$, \overline{CD} ③ $\angle ACD$, \overline{AB}


 $\angle AFC, \overline{CD}$

⑤ ∠AFC, AD

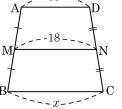
해설

 $\triangle BDA$ 에서 $\overline{BA} : \overline{FA} = \overline{BD} : \overline{CD}$ 이다.

8. 다음 그림에서 ΔABC의 각 변의 중점이 점 D, E, F이고, ΔDEF의 둘레의 길이가 24 일 때, AC의 길이를 구하여라.

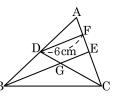
➢ 정답 : 14

중점연결정리에 의해 $\overline{\mathrm{DE}} = \frac{1}{2}\overline{\mathrm{AC}}, \ \overline{\mathrm{EF}} = \frac{1}{2}\overline{\mathrm{BA}}, \ \overline{\mathrm{FD}} = \frac{1}{2}\overline{\mathrm{CB}}$ 이다.


△DEF의 둘레의 길이는

 $\overline{\mathrm{DE}} + \overline{\mathrm{EF}} + \overline{\mathrm{FD}} = \frac{1}{2}(\overline{\mathrm{AC}} + \overline{\mathrm{BA}} + \overline{\mathrm{CB}}) = 24$ 이므로 $\triangle \mathrm{ABC}$ 의

둘레의 길이는

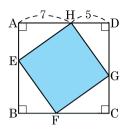

 $\overline{AB} + \overline{BC} + \overline{CA} = 48$ 이다. 따라서 $\overline{AC} = 48 - 18 - 16 = 14$ 이다.

9. 다음 그림에서
$$x$$
 의 값은?

 $18 = \frac{1}{2}(15 + x), x = 21(\text{ cm})$

10. 다음 그림에서 점 G 는 △ABC 의 무게중심이고 점 F 는 AE의 중점이다. DF = 6 cm 일때, GE 의 길이를 구하여라.

<u>cm</u>

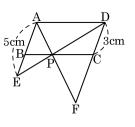

정답: 4_{cm}

해설

$$\triangle ABE$$
 에서 점 D, F 는 각각 \overline{AB} , \overline{AE} 의 중점이므로 $\overline{BE} = 2\overline{DF} = 12$ (cm)

 $\overline{\mathrm{BE}}:\overline{\mathrm{GE}}=3:1$ 이므로 $\overline{\mathrm{GE}}=12 imesrac{1}{3}=4\ (\mathrm{\,cm})$

11. 다음 그림과 같이 ∠A = 90°인 △AEH 와 이와 합동인 세 개의 삼각형을 이용하여 정사각형 ABCD 를 만들었다. 이때, 정사각형 EFGH의 넓이를 구하여라.



답:

➢ 정답: 74

$$\overline{AH} = 7, \overline{HD} = \overline{AE} = 5$$
 이고 $\triangle AEH$ 는 직각삼각형이므로 $\overline{EH}^2 = \overline{AH}^2 + \overline{AE}^2 = 7^2 + 5^2 = 74$ 이다.

사각형 EFGH 는 정사각형이므로 $\overline{\text{EH}} = \overline{\text{FE}} = \overline{\text{GF}} = \overline{\text{GH}}$ 이다. 따라서 정사각형 EFGH 의 넓이는 $\overline{\text{EH}}^2 = 74$ 이다. **12.** 다음 그림에서 □ABCD 는 평행사변형이고, AE = 5cm, CD = 3cm 일 때, CF 의 길이를 구하여라.

▶ 답:

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $\overline{\mathrm{CF}}=4.5\mathrm{\underline{cm}}$

$$\square ABCD$$
 가 평행사변형 이므로 $\overline{AB} = \overline{DC} = 3$ (cm) 이고, $\overline{BE} = \overline{AE} - \overline{AB} = 5 - 3 = 2$ (cm) 가 된다. $\triangle EAD$ 에서 \overline{AD} // \overline{BP}

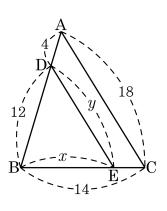
이므로 AB: BE = DP: PE = 3:2 가 되며,

AB: BE = DI : TE = 3.27[되기, $\triangle PAE \bigcirc \triangle PFD$ 이므로 $\overline{PE} : \overline{PD} = \overline{AE} : \overline{FD}$, 2:3=5: (3+x), 2(3+x) = 15, 2x = 9

따라서 $x = \frac{9}{2} = 4.5$ (cm) 가 된다.

13. 다음 그림에서 \overline{AD} $//\overline{BC}$, \overline{AB} $//\overline{DE}$ 일 때, 두 수 x, y 의 곱 xy 의 값을 구하여라. (단, \overline{AB} = 12, \overline{BC} = 18, \overline{AD} = 8, \overline{AE} = 6,

$$\overline{AB} = 12$$
, $\overline{BC} = 18$, $\overline{AD} = 8$, $\overline{AE} = 6$, $\overline{DE} = x$, $\overline{CE} = y$)


 $\overline{AD} /\!\!/ \overline{BC}$, $\overline{AB} /\!\!/ \overline{DE}$ 이므로 \overline{AD} : $\overline{BC} = \overline{ED}$: \overline{AB} 가 되며, $8:18=x:12,\ x=\frac{16}{3}$ 가 나온다.

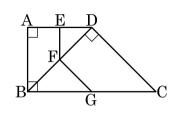
또한 $\overline{\mathrm{AD}}:\overline{\mathrm{BC}}=\overline{\mathrm{EA}}:\overline{\mathrm{AC}}$ 이므로

 $8:18=6:(6+y),\ y=rac{15}{2}$ 이 나온다.

따라서 $xy = \frac{16}{3} \times \frac{15}{2} = 40$ 이다.

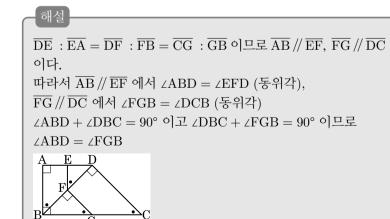
14. 다음 그림에서 $\overline{\mathrm{DE}}$ // $\overline{\mathrm{AC}}$ 일 때, x+y 의 값을 구하여라.

▷ 정답: 24

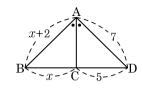

해설

x : 12 = 14 : 16, x = 10.5

12 : y = 16 : 18, y = 13.5


 $\therefore x + y = 10.5 + 13.5 = 24$

15. 사각형 ABCD 에서 $\overline{DE}:\overline{EA}=\overline{DF}:\overline{FB}=\overline{CG}:\overline{GB}$ 이고, $\angle A=\angle ABC=\angle BDC=90^\circ$ 일 때, 다음 중 크기가 다른 하나를 고르면?

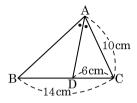


∠DBC

- ① ∠ABD
- ② ∠EFD
- ④ ∠FGB ⑤ ∠DCB

16. 다음 그림의 \triangle ABC 에서 \overline{AC} 는 \angle A의 이등 분선이다. x의 값을 구하여라.

- ▶ 답:
- ▷ 정답: 5


$$\overline{AB} : \overline{AD} = \overline{BC} : \overline{CD}$$

x + 2: 7 = x: 5

7x = 5x + 10

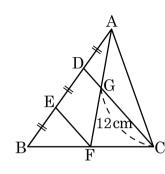
 $\therefore x = 5$

 17. 다음 그림과 같은 △ABC에서 ∠A의 이등분 선과 변 BC 와의 교점을 D 라 할 때, ĀB의 길이는? (단, ĀC = 10 cm, BC = 14 cm, DC = 6 cm)

①
$$\frac{24}{5}$$
 cm ② $\frac{40}{5}$ cm ③ $\frac{56}{3}$ cm ④ $\frac{40}{3}$ cm ⑤ $\frac{70}{3}$ cm

해설
$$\overline{AC} : \overline{AB} = \overline{DC} : \overline{DB} \ \text{이므로 } 10 : \overline{AB} = 6 : 8$$
$$\therefore \overline{AB} = \frac{40}{3}$$

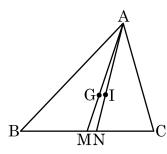
18. 다음 그림과 같은 △ABC에서 선분 AB, BD, DC, CA의 중점을 각각 E, F, G, H라 한다. EH = 3cm일 때, FG의 길이는?



점 E,
$$\mathrm{H}$$
가 각각 $\overline{\mathrm{AB}}$, $\overline{\mathrm{AC}}$ 의 중점이므로

$$\overline{\mathrm{EH}} = \frac{1}{2}\overline{\mathrm{BC}}$$
 : $\overline{\mathrm{BC}} = 2\overline{\mathrm{EH}} = 2 \times 3 = 6 \mathrm{(cm)}$

점 F, G가 각각 \overline{BD} , \overline{CD} 의 중점이므로 $\overline{FG} = \frac{1}{2}\overline{BC} \qquad \therefore \ \overline{FG} = \frac{1}{2} \times 6 = 3 \text{(cm)}$

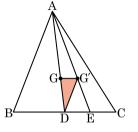

19. 다음 그림에서 $\overline{AD}=\overline{DE}=\overline{EB}$, $\overline{BF}=\overline{FC}$ 이다. $\overline{GC}=12\,\mathrm{cm}$ 일 때, \overline{EF} 의 길이로 옳은 것은?

5 cm 3 7 cm

$$\overline{\mathrm{EF}} = \frac{1}{2}\overline{\mathrm{DC}}, \ \overline{\mathrm{DG}} = \frac{1}{2}\overline{\mathrm{EF}}$$

$$\overline{\mathrm{EF}} : \overline{\mathrm{GC}} = 2 : 3$$

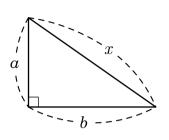
 $\overline{\text{EF}}$: 12 = 2 : 3 $\overline{\text{EF}}$ = 8(cm) 20. 다음 그림에서 점 G,I는 각각 $\triangle ABC$ 의 무게중심과 내심이다. $\overline{AG},\overline{AI}$ 의 연장선이 \overline{BC} 와 만나는 점을 M,N 이라 하면 \overline{GI} $//\overline{MN}$ 이다. \overline{GI} : \overline{BC} = 1 : 7 일 때, \overline{AB} : \overline{AC} 를 바르게 구한 것은?


① 5:2 ② 6:5 ③ 7:3 ④ 11:9 ⑤ 13:7

riangle riangleAAMN 에서 $\overline{ ext{GI}}:\overline{ ext{MN}}=2:3$ 이므로

 $\overline{BM}: \overline{MN}: \overline{NC} = 7:3:4$

 $\overline{AB} : \overline{AC} = \overline{BN} : \overline{NC} = 10 : 4 = 5 : 2$

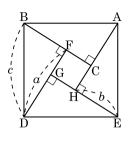

①
$$\frac{1}{6}$$
 바 ② $\frac{1}{12}$ 바 ③ $\frac{1}{18}$ 바 ④ $\frac{1}{36}$ 바 ⑤ $\frac{1}{42}$ 바

$$\triangle \mathrm{GDG'} = \frac{1}{3} \triangle \mathrm{G'AD} = \frac{1}{3} \left(\frac{1}{3} \triangle \mathrm{ADC} \right)$$

$$= \frac{1}{9} \left(\frac{1}{2} \triangle \mathrm{ABC} \right) = \frac{1}{18} \triangle \mathrm{ABC}$$
따라서 $\triangle \mathrm{GDG'} \succeq \triangle \mathrm{ABC}$ 의 $\frac{1}{18}$ 배

22. 다음 그림처럼 빗변의 길이가 x 이고, 다른 두 변의 길이가 a, b 인 직각삼각형에서 다음 중 옳은 것은?

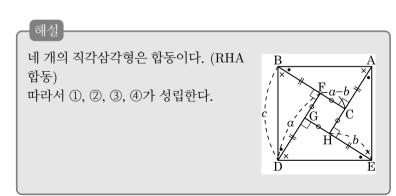
$$\bigcirc a+b=x$$

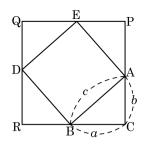

$$a+b-2x=0$$

$$a \times b = x^2$$

$$\bigcirc b^2 = (x-a)(x+a)$$

- (L) 피타고라스 정리에 의하여 옳다.
- $\bigcirc b^2 = (x-a)(x+a) = x^2 a^2$


23. 다음 그림은 AB 를 한 변으로 하는 정사각 형 ABDE 를 만들어 각 꼭짓점에서 수선 AH, BC, DF, EG 를 그어 직각삼각형을 만든 것이다. 다음 중 옳지 않은 것은?


(1) $c^2 = a^2 + b^2$

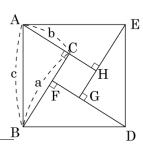
- ② $\triangle ABC = \triangle EAH$
- ③ □CFGH 는 정사각형

 \bigcirc \square CFGH = $2\triangle$ ABC

24. 다음은 그림을 이용하여 피타고라스 정리를 설명한 것이다. 이때 () 안에 들어갈 것으로 옳지 <u>않은</u> 것은?

[가정] △ABC 에서 ∠C = 90° [결론] $a^2 + b^2 = c^2$ [증명] 직각삼각형 ABC 에서 두 선분 CB, CA 를 연장하여 정사각형 CPQR를 만들고, PE = QD = b 인 두 점 D, E 를 잡아 정사각형 AEDB 를 그린다. □CPQR = (①) + 4×(②) (③) = $c^2 + 4 \times \frac{1}{2} \times ab$

해설
$$\Box$$
CPQR = $(a+b)^2$


 $a^2 + 2ab + b^2 = c^{2} + (4)$

따라서 (⑤)이다.

25. 다음은 피타고라스 정리를 설명하는 과정이다. 밑줄에 들어갈 것으로 알맞은 것은?

직각삼각형 ABC 와 합동인 삼각형 4개를 맞추어 정사각형 ABDE 를 만든다.

파라서 $\Box ABDE$ 의 넓이에서 $\Box ABDE = 4\triangle ABC + \Box CFGH$ $c^2 = 4 \times \frac{1}{2} ab + (a-b)^2 \quad \therefore \ c^2 = a^2 + b^2$

- ① \Box ABDE는 한 변의 길이가 a-b인 정사각형이 된다.
- ② \square ABDE는 한 변의 길이가 b-a인 정사각형이 된다.
- ③ \Box CFGH는 한 변의 길이가 b-a인 정사각형이 된다.
- ④ \Box CFGH는 한 변의 길이가 a-b인 마름모가 된다.
- ⑤ \square CFGH는 한 변의 길이가 a-b인 정사각형이 된다.

해설

직각삼각형 ABC와 합동인 삼각형 4개를 맞추어 정사각형 ABDE를 만든다. □CFGH는 한 변의 길이가 a - b인 정사각형이 된다.

따라서 DABDE의 넓이에서

 $\Box ABDE = 4\triangle ABC + \Box CFGH$ $c^2 = 4 \times \frac{1}{2}ab + (a-b)^2 \quad \therefore \quad c^2 = a^2 + b^2$