다음 보기 중 방정식 x - 2y + 6 = 0의 그래프와 같은 일차함수를 1.

▷ 정답: ②

▶ 답:

-2y = -x - 6, $y = \frac{1}{2}x + 3$ 이므로 @이다.

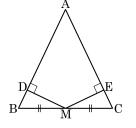
- **2.** 다음은 일차방정식 3y + 6 = 0의 그래프에 관한 설명들이다. 옳은 것을 모두 고르면?
 - ①x값에 상관없이 y값은 항상 -2이다.
 - ② y값에 상관없이 x값은 항상 -2이다.③ y축과 평행한 직선이다.
 - ④ x 축과 평행한 직선이다.
 - ③ x축 위의 점 (2, 0)을 지난다.

y = a꼴인 함수는 상수함수라 하고

해설

x값과 상관없이 항상 y값은 a이고, x축과 평행하다.

다음 그림과 같이 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 인 이등변삼각형 3. ABC 에서 \overline{BC} 의 중점을 M 이라 하자. 점 M 에서 $\overline{AB}, \overline{AC}$ 에 내린 수선의 발을 각각 D,E 라 할 때, $\overline{\mathrm{MD}}=\overline{\mathrm{ME}}$ 임을 나타내는 과정에서 필요한 조건이 <u>아닌</u> 것은?



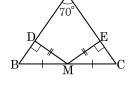
 $\boxed{\mathfrak{D}}\overline{\mathrm{BD}}=\overline{\mathrm{CE}}$

① $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$

- ② $\angle B = \angle C$ $\textcircled{4} \angle BDM = \angle CEM$
- ⑤ RHA 합동

 ΔBMD 와 ΔCME 에서 $\angle B=\angle C$, $\angle BDM=\angle CEM=90$ ° , $\overline{\mathrm{BM}} = \overline{\mathrm{MC}}$ ∴ △BMD ≡ △CME (RHA 합동)

4. 다음 그림의 △ABC 에서 ∠A = 70°, 변 BC 의 중점 M 에서 \overline{AB} 와 \overline{AC} 에 내린 수선의 발을 각각 D, E 라 하면 $\overline{\text{MD}} = \overline{\text{ME}}$ 이다. ∠BMD 의 크기는?



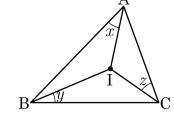
① 35° ④ 20°

 \bigcirc 30° 325° ⑤ 15°

해설

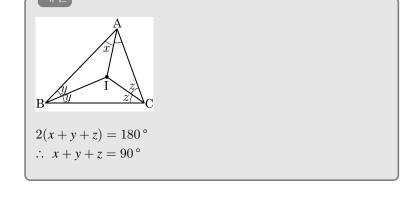
 ΔBMD 와 ΔCME 는 RHS 합동조건에 의해 합동이 된다. 따라서 $\angle B$ 와 $\angle C$ 는 같게 되고 $\triangle ABC$ 는 이등변삼각형이 되어 ∠B 와 ∠C 는 55° 가 된다. 따라서 ∠BMD 는 35°이다.

5. 다음 그림에서 점 I가 \triangle ABC의 내심일 때, $\angle x + \angle y + \angle z = ($)° 이다. () 안에 알맞은 수를 구하여라.

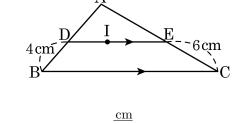


 ► 답:

 ▷ 정답:
 90



6. 다음 그림에서 점 I 가 $\triangle ABC$ 의 내심이고, \overline{DE} $/\!/ \overline{BC}$ 이다. $\overline{DB} = 4($ cm), $\overline{EC} = 6$ cm 일 때, \overline{DE} 의 길이를 구하여라.

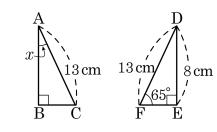


▷ 정답: 10 cm

답:

 ΔDBI , ΔEIC 는 이등변 삼각형이므로 $\overline{DI}=4(\,\mathrm{cm})$, $\overline{IE}=6(\,\mathrm{cm})$ $\overline{DE}=\overline{DI}+\overline{IE}=4+6=10(\,\mathrm{cm})$

합동인 두 직각삼각형 ABC, DEF가 다음 그림과 같을 때, $\angle x$ 의 크 7. 기는?



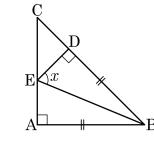
- ① 65° ② 55° ③ 45°
- 4 35°

 \triangle ABC, \triangle DEF는 서로 합동이다.

해설

 $\therefore \angle x = \angle \text{FDE} = 180^{\circ} - 90^{\circ} - 65^{\circ} = 25^{\circ}$

8. 다음 그림과 같이 $\angle A=90^\circ$, $\overline{AB}=\overline{AC}$ 인 직각이등변삼각형 ABC 가 있다. $\overline{AB} = \overline{DB}$ 인 점 D 를 지나며 \overline{AC} 와 만나는 점을 E 라고 할 때, ∠x 의 크기는?



① 60° ② 62.5° ③ 65°

4 67.5°

⑤ 70°

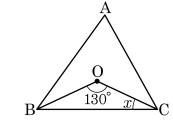
△ABC 가 이등변삼각형이므로,

 $\angle ABC = 45^{\circ}$ $\triangle ABE \equiv \triangle DBE \ (RHS \ 합동)$ 이므로 $\overline{AE} = \overline{DE}$ 이고, \overline{BE} 는

∠ABC 를 이등분한다. $\angle EBD = 45^{\circ} \times \frac{1}{2} = 22.5^{\circ}$

△DBE 에서 $\therefore \ \angle x = 90^{\circ} - 22.5^{\circ} = 67.5^{\circ}$

9. 다음 그림에서 점 O 가 \triangle ABC 의 외심일 때, $\angle x$ 의 크기를 구하여라.



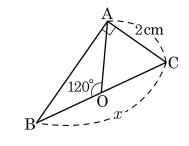
▷ 정답: 25°

▶ 답:

해설 $\overline{OB} = \overline{OC}$ 이므로 $\triangle OBC$ 는 이등변삼각형이다.

따라서 이등변삼각형의 밑각인 $\angle OBC = \angle OCB$ 이므로 $x = 25^\circ$ 이다.

10. 다음 그림에서 점 O 는 직각삼각형 ABC 의 외심일 때, x 의 값은?



① 2cm

② 3cm

3 4cm

④ 5cm

 \bigcirc 6cm

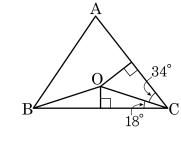
해설 직각삼각형의 빗변의 중점인 점 O 는 외심이므로 $\overline{\mathrm{OB}} = \overline{\mathrm{OA}} =$

 $\overline{\mathrm{OC}}$ 이다. $\angle AOB = 120^{\circ}$ 이므로 $\angle AOC = 60^{\circ}(\because 180^{\circ} - \angle AOB)$

 $\overline{\mathrm{OA}} = \overline{\mathrm{OC}}$, $\angle \mathrm{AOC} = 60^\circ$ \therefore $\angle AOC = \angle OCA = \angle OAC = 60^\circ$ 이므로 $\triangle AOC$ 는 정삼각형

이다. $\therefore \overline{\mathrm{BC}} = \overline{\mathrm{OB}} + \overline{\mathrm{OC}} = \overline{\mathrm{OA}} + \overline{\mathrm{OC}} = 2 + 2 = 4(\mathrm{cm})$

11. 다음 그림의 ABC 에서 점 O 는 외심이다. ∠OCA = 34°, ∠OCB = 18°일 때, ∠OBA 의 크기는?



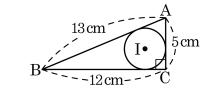
① 18° ② 34° ③ 36°

해설

438°

 \bigcirc 52 $^{\circ}$

 $\angle OBA + \angle OCB + \angle OCA = 90^{\circ}$ $\angle OBA = 90^{\circ} - \angle OCB - \angle OCA = 38^{\circ}$ 12. 다음 그림과 같은 직각삼각형 ABC 의 내접원 I 의 넓이는?



- ① $2\pi \text{cm}^2$
- $2 3\pi \text{cm}^2$
- $34\pi \text{cm}^2$

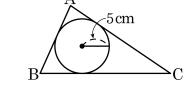
해설

 $\Im 9\pi \text{cm}^2$

내접원의 반지름의 길이를 rcm 라 하면 $\frac{1}{2} \times 5 \times 12 = \frac{1}{2} \times r \times 12$

(13+12+5) 이다. 30=15r , r=2 이다. 따라서 내접원의 넓이는 $4\pi\mathrm{cm}^2$ 이다.

13. 다음 그림에서 $\triangle ABC$ 의 내접원의 반지름의 길이는 $5\,\mathrm{cm}$ 이다. $\triangle ABC = 120\,\mathrm{cm}^2$ 일 때, $\triangle ABC$ 의 세 변의 길이의 합을 구하여라.



 $\underline{\mathrm{cm}}$

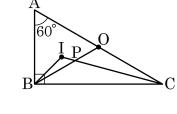
▷ 정답: 48cm

▶ 답:

세 변의 길이를 각각 a, b, c 라 두면 $\triangle ABC = \frac{1}{2} \times 5 \times (a+b+c)$ ∴ $a+b+c = 120 \times \frac{2}{5} = 48 \text{ (cm)}$

$$\therefore a + b + c = 120 \times \frac{2}{5} = 48$$

14. 다음 그림에서 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 점 I,O 는 각각 내심, 외심이다. $\angle A=60^\circ$ 일 때, $\angle BPC$ 의 크기를 구하여라.



▷ 정답: 135 _°

▶ 답:

외심의 성질에 의해 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}}$ 이므로 $\angle\mathrm{A} = \angle\mathrm{OBA} = 60^\circ$ →

 $\angle OBC = 30^{\circ}$ 이다. … 내심의 정의에 의해 $\overline{
m IC}$ 가 $\angle ACB=30^\circ$ 를 이등분하므로 $\angle ICB=$

 15° 이고, $\angle {\rm BIC}=90^\circ+60^\circ imes {1\over 2}=120^\circ$ 이므로 $\triangle {\rm IBC}$ 의 내각의 합을 이용하면 $\angle {\rm IBC}=180^\circ-(120^\circ+15^\circ)$

= 45° 이다. …ⓒ

①-①에 의해 ∠IBP = 15° 이다. ∠BPC 는 ∠IPB 의 외각이므로 ∴∠BPC = ∠BIC + ∠IBP =

 $120^\circ + 15^\circ = 135^\circ$

- **15.** 일차방정식 2ax by + 5 = 0의 그래프의 기울기는 -2이고, y축 방향으로 3만큼 평행이동한 일차방정식은 2ax - by + 2b = 0이다. 이때, 상수 a, b에 대하여 2a + b의 값은?
- ① -5 ② -4 ③ 0 ④ 4

i)
$$2ax - by + 5 = 0$$
는 $y = \frac{2a}{b}x + \frac{5}{b}$ 이다.

$$\frac{2a}{b} = -2 \qquad \therefore a = -b$$

$$b$$

ii) $y = \frac{2a}{b}x + \frac{5}{b}$ 을 y 축 방향으로 3만큼 평행이동한 식은

$$y = \frac{2a}{b}x + \frac{5}{b} + 3, \ 2ax - by + 2b = 0$$
$$y = \frac{2a}{b}x + 2$$

$$\therefore \frac{5}{b} + 3 = 2 , b = -5$$

$$\therefore \frac{-}{b} + 3 = 2, b = -5$$

$$| \text{iii) } 2a + b = 2 \times 5 + (-5) = 5$$

- **16.** 두 직선 y = x + 2, y = 2x 1 의 교점을 지나고, 직선 x = 3 에 수직인 직선의 방정식 ax + by + c = 0 의 식은?

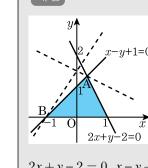
 $\bigcirc y - 5 = 0$

③ 3x - 2y + 5 = 0⑤ y = 3x + 5 두 직선의 교점 (3, 5) 를 지나고 직선

x = 3 에 수직인 직선의 방정식을 그래프에 나타내어 보면 y = 5 임을 알수있다.

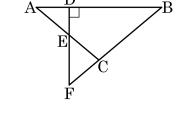
 $\begin{array}{c|c}
x-5 \\
y=5 \\
\hline
0 & x
\end{array}$

- **17.** 직선 $y = mx + \frac{3}{2}$ 이 세 직선 2x + y 2 = 0, x y + 1 = 0, y = 0으로 둘러싸인 삼각형의 둘레와 만나지 않는 m의 범위를 구하면?
 - ① $m < -\frac{1}{2}$ 또는 $m > \frac{3}{2}$ ② $m > \frac{3}{2}$ ③ $m < -\frac{1}{2}$ ⑤ $m < \frac{3}{2}$



- 2x + y 2 = 0, x y + 1 = 0의 교점 A의 좌표는 $\left(\frac{1}{3}, \frac{4}{3}\right)$ 이고, $y = mx + \frac{3}{2}$ 가 점 A를 지날 때 $m = -\frac{1}{2}$
- $y = mx + \frac{3}{2}$ 가 점 B를 지날 때 $m = \frac{3}{2}$
- $\therefore -\frac{1}{2} < m < \frac{3}{2}$

18. 다음 그림과 같이 $\angle A = \angle B$ 인 삼각형 ABC 의 변 AB 에 수직인 직선 이 변 AB , 변 AC 와 변 BC 의 연장선과 만나는 점을 각각 D, E, F 라 정한다. $\overline{\mathrm{BF}}=7\mathrm{cm},\ \overline{\mathrm{AE}}=2.5\mathrm{cm}$ 일 때, 선분 EC 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

> 정답: 2.25 <u>cm</u>

 $\angle A = \angle B$ 이면 $\triangle ABC$ 는 이등변삼각형이므로

해설

답:

 $\overline{AC} = \overline{BC}$ $\angle A = \angle B = a$ 라 하면

△ADE 에서

 $\angle AED = 90^{\circ} - a$

또 ∠CEF 는 ∠AED 의 맞꼭지각이므로

 $\angle \text{CEF} = 90\,^{\circ} - a \cdots \bigcirc$ 또 ∆BDF 에서

 $\angle FBD = a$, $\angle BDF = 90$ ° 이므로 $\angle BFD = 90^{\circ} - a \cdots \bigcirc$

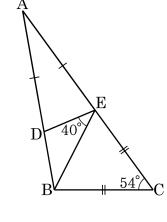
 \bigcirc , \bigcirc 에서 \triangle CEF 는 이등변삼각형이므로 $\overline{\text{CE}} = \overline{\text{CF}} = x$ 라 하면

 $\overline{AC} = \overline{BC}$ 이므로 2.5 + x = 7 - x

 $\therefore x = 2.25 \text{cm}$

따라서 선분 EC 의 길이는 2.25cm 이다.

19. 다음 그림에서 $\triangle ADE$ 와 $\triangle EBC$ 는 이등변삼각형이다. $\angle DEB=40^\circ$, $\angle C=54^\circ$ 일 때, $\angle A$ 의 크기를 구하여라.



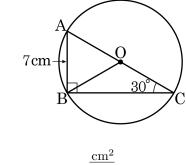
➢ 정답: 26°

해설

▶ 답:

 $\angle BEC = (180^{\circ} - 54^{\circ}) \div 2 = 63^{\circ}$ $\angle AED = 180^{\circ} - (40^{\circ} + 63^{\circ}) = 77^{\circ}$ $\angle A = 180^{\circ} - 77^{\circ} \times 2 = 26^{\circ}$

20. 다음 그림에서 점 O는 직각삼각형 ABC의 외심이다. $\angle C = 30^{\circ}$ 이고 $\overline{AB} = 7 \mathrm{cm}$ 일 때, 원 O의 넓이를 구하여라.



정답: 49π <u>cm²</u>

▶ 답:

