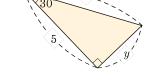
1. 한 변의 길이가 2인 정삼각형의 넓이를 구하여라.


▶ 답:

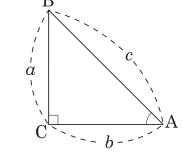
▷ 정답: √3

 $(정삼각형의 넓이) = \frac{\sqrt{3}}{4} \times 2^2 = \sqrt{3}$

- 다음과 같은 직각삼각형의 x, y의 값을 순 **2**. 서대로 나타낸 것으로 바른 것은?

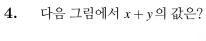
 - ① $\frac{8\sqrt{3}}{3}$, $\frac{4\sqrt{3}}{3}$ ② $\frac{8\sqrt{3}}{3}$, $\frac{7\sqrt{3}}{3}$ ③ $\frac{10\sqrt{3}}{3}$, $\frac{4\sqrt{3}}{3}$ ④ $\frac{10\sqrt{3}}{3}$, $\frac{5\sqrt{3}}{3}$ ⑤ $\frac{11\sqrt{3}}{3}$, $\frac{5\sqrt{3}}{3}$

2:
$$\sqrt{3} = x : 5$$
, $\sqrt{3}x = 10$

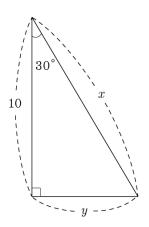

$$\therefore x = \frac{10}{\sqrt{3}} = \frac{10\sqrt{3}}{3}$$

$$\therefore x = \frac{1}{\sqrt{3}} = \frac{3}{3}$$

1:
$$\sqrt{3} = y$$
: 5, $\sqrt{3}y = 5$


$$\therefore y = \frac{5}{\sqrt{3}} = \frac{5\sqrt{3}}{3}$$

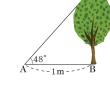
다음 그림을 보고, sin A, cos A, tan A 의 값을 각각 바르게 구한 **3.**



- ① $\sin A = \frac{a}{b}$, $\cos A = \frac{b}{c}$, $\tan A = \frac{a}{c}$ ② $\sin A = \frac{b}{c}$, $\cos A = \frac{a}{c}$, $\tan A = \frac{a}{b}$ ③ $\sin A = \frac{a}{c}$, $\cos A = \frac{b}{c}$, $\tan A = \frac{a}{b}$ ④ $\sin A = \frac{a}{c}$, $\cos A = \frac{c}{b}$, $\tan A = \frac{a}{b}$ ⑤ $\sin A = \frac{a}{b}$, $\cos A = \frac{a}{c}$, $\tan A = \frac{b}{c}$

$$\sin \mathbf{A} = \frac{\mathbf{\Xi} \circ \mathbf{I}}{\mathbf{U} \cdot \mathbf{U}} = \frac{a}{c} , \cos \mathbf{A} = \frac{\mathbf{U} \cdot \mathbf{U}}{\mathbf{U} \cdot \mathbf{U}} = \frac{b}{c} , \tan \mathbf{A} = \frac{\mathbf{\Xi} \circ \mathbf{I}}{\mathbf{U} \cdot \mathbf{U}} = \frac{a}{b}$$

- ① $8\sqrt{3}$ ② $9\sqrt{3}$
- $\boxed{3}10\sqrt{3}$
- $4 \ 11\sqrt{3}$ $12\sqrt{3}$



$$x = \frac{10}{\cos 30^{\circ}} = \frac{20}{30}$$

$$v = 10 \times \tan 30^{\circ} = 0$$

$$x = \frac{10}{\cos 30^{\circ}} = \frac{20\sqrt{3}}{3}$$
$$y = 10 \times \tan 30^{\circ} = 10 \times \frac{1}{\sqrt{3}} = \frac{10\sqrt{3}}{3}$$
$$\therefore x + y = 10\sqrt{3}$$

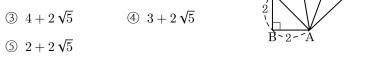
5. 다음 그림과 같이 나무에서 1m 떨어진 A 지점에서 나무의 꼭대기를 올려다본 각의 크기가 48° 였다. 나무의 높이를 구하여라. (단, $\sin 48^\circ = 0.74, \, \cos 48^\circ = 0.67, \, \tan 48^\circ = 1.11 로 계산한다.)$

 $\underline{\mathbf{m}}$

정답: 1.11 m

V 38 • 1.11<u>m</u>

▶ 답:


해설

tan 48° = (나무의 높이) (나무의 높이) = AB × tan 48° = 1.11(m)

6. 다음 그림에서 $\triangle AEF$ 의 둘레의 길이는?

 $\bigcirc 6 + 2\sqrt{5}$

② $5+2\sqrt{5}$

 $\overline{AE} = \sqrt{2^2 + 2^2 + 2^2 + 2^2} = 4,$ $\overline{AF} = \sqrt{4^2 + 2^2} = 2\sqrt{5}$

따라서 $\triangle AEF$ 의 둘레를 구하면 $4+2+2\sqrt{5}=6+2\sqrt{5}$ 이다.

7. 세 변의 길이가 $2\sqrt{14}\,\mathrm{cm},\,4\sqrt{6}\,\mathrm{cm},\,2\sqrt{38}\,\mathrm{cm}$ 이고, $2\sqrt{7}\,\mathrm{cm},\,6\sqrt{2}\,\mathrm{cm},\,10\,\mathrm{cm}$ 인 두 직각삼각형의 넓이를 각각 구하여라.

답: <u>cm²</u>

 달:
 cm²

 > 정답:
 8√21cm²

 > 정답:
 6√14 cm²

▷ 성답: 6 √14<u>cm</u>

 $(2\sqrt{38})^2=(2\sqrt{14})^2+(4\sqrt{6})^2$ 이므로 $2\sqrt{14}\,\mathrm{cm},\,4\sqrt{6}\,\mathrm{cm},\,2\sqrt{38}\,\mathrm{cm}$ 에서 가장 긴 변은 $2\sqrt{38}\,\mathrm{cm}$ 인 직 각삼각형이다.

넓이는 $\frac{1}{2} \times 2\sqrt{14} \times 4\sqrt{6} = 8\sqrt{21} \text{ (cm}^2)$ 이고, $(10)^2 = (2\sqrt{7})^2 + (6\sqrt{2})^2 \text{ 이므로}$

2

8. 세 변의 길이가 다음 보기와 같을 때, 직각삼각형을 모두 골라라.

□ 5,12,13 □ 4,8,12 □ 1,√3,2 □ 9,12,15 □ 12,13,19 □ 8,15,19

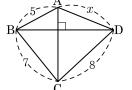
▶ 답:

답:

▶ 답:

 ▷ 정답: ①

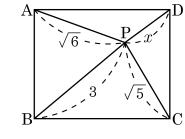
 ▷ 정답: ②

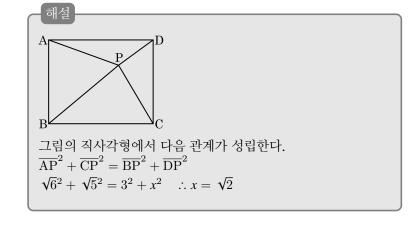

 ▷ 정답:
 ②

해설

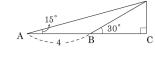
 $9^2 + 12^2 = 15^2$

9. 다음 사각형에서 x 의 값을 구하면?

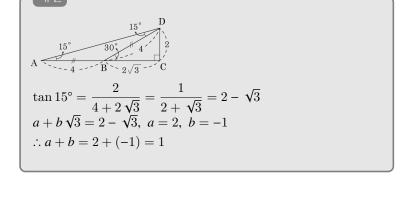

① 6 ② $\sqrt{37}$ ③ $\sqrt{39}$ B $\sqrt{7}$ ② $\sqrt{10}$ ⑤ 7


 $5^2 + 8^2 = x^2 + 7^2$ $\therefore x = 2\sqrt{10}$

해설


10. 다음 그림의 직사각형 ABCD 에서 $\overline{AP}=\sqrt{6}, \overline{BP}=3$, $\overline{CP}=\sqrt{5}$ 일 때, \overline{DP} 의 길이는?

① $\sqrt{2}$ ② $\sqrt{3}$ ③ $2\sqrt{3}$ ④ $3\sqrt{2}$ ⑤ 8

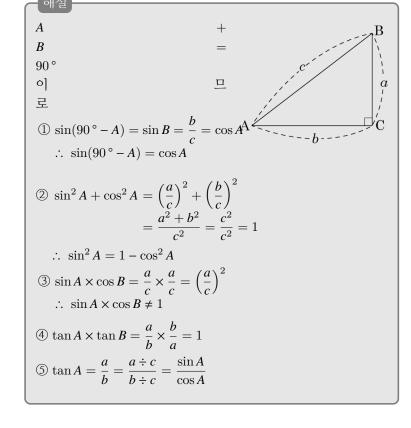


11. 다음 그림에서 $\tan 15^\circ$ 의 값이 $a+b\sqrt{3}$ 일 때, a+b 의 값을 구하여라.

▶ 답:

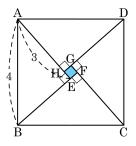
▷ 정답: 1

- ① $1 + \frac{\sqrt{2}}{4}$ ② $1 + \frac{\sqrt{3}}{4}$ ③ $2 + \frac{\sqrt{2}}{4}$ ③ $2 + \frac{\sqrt{3}}{4}$


기설
$$2\sin 45 \circ \cos 45 \circ + \cos 30 \circ \sin 30 \circ$$

= $2 \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{1}{2} = 1 + \frac{\sqrt{3}}{4}$

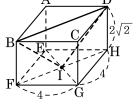
13. 다음 삼각비 중 가장 큰 것은?


 $\cos 30^{\circ} = 0.8660, \sin 40^{\circ} = 0.6428$ $\sin 45^{\circ} = 0.7071, \cos 40^{\circ} = 0.7660$ $\tan 45^{\circ} = 1.000$

- **14.** $A + B = 90^{\circ}$ (단, $A > 0^{\circ}$, $B > 0^{\circ}$) 일 때, 다음 중 옳지 <u>않은</u> 것은?

 - ① $\sin(90^{\circ} A) = \cos A$ ② $\sin^2 A = 1 \cos^2 A$
 - $\Im \tan A = \frac{\sin A}{\cos A}$

15. 다음 그림에서 4 개의 직각삼각형은 모두 합동이고, $\overline{AB}=4$, $\overline{AE}=3$ 일 때, 사각형 EFGH 의 넓이를 구하면?



① 9 ② $3-\sqrt{7}$ ③ $9-\sqrt{7}$ $4 16 - 2\sqrt{7}$ $16 - 6\sqrt{7}$

 $\overline{BE} = \sqrt{4^2 - 3^2} = \sqrt{7}$

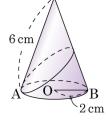
 $\overline{\text{EF}} = 3 - \sqrt{7}$ 따라서 $\square \text{EFGH} = (3 - \sqrt{7})^2 = 16 - 6\sqrt{7}$ 이다.

16. 다음 그림과 같은 직육면체에서 밑면의 두 대각선의 교점을 I 라고 할 때, △BDI 의 둘레의 길이가 a + b√2 일 때, a + b 의 값은?(단, a, b는 유리수)

답:

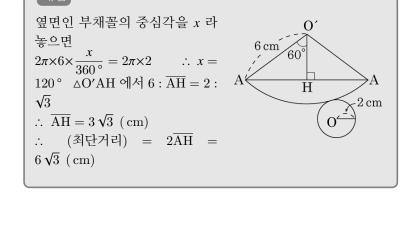
> 정답: a+b=12

 $\overline{\mathrm{BD}} = \overline{\mathrm{FH}} = 4\,\sqrt{2}$ 이므로

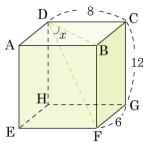

해설

 $\overline{\mathrm{IF}}=2\,\sqrt{2}$ 따라서 $\overline{\mathrm{BI}}=\sqrt{(2\,\sqrt{2})^2+(2\,\sqrt{2})^2}=4$

같은 방법으로 $\overline{ID} = 4$


따라서 $\triangle BDI$ 의 둘레는 $8 + 4\sqrt{2}$ 이다. 따라서 8 + 4 = 12 이다.

17. 다음 그림과 같이 밑면의 반지름의 길이가 2 cm 이고, 모선의 길이가 6 cm 인 원뿔을 점 A 에서 옆면을 지나 다시 점 A 까지 왔을 때의 최단거리 를 구하여라.


▷ 정답: 6√3 cm

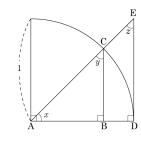
▶ 답:

 $\underline{\mathrm{cm}}$

18. 다음 직사각형에서 \angle FDB 를 x 라고 하면, $\sin x \times \cos x = \frac{b}{a}$ 이다. a+b의 값을 구하시오. (단, a, b는 서로소)

▶ 답:

▷ 정답: 91


 $\overline{\mathrm{DB}} = 10$

 $\overline{BF} = 12$

 $\overline{\mathrm{DF}} = 2\,\sqrt{61}$ 이므로

 $\sin x \times \cos x = \frac{12}{2\sqrt{61}} \times \frac{10}{2\sqrt{61}} = \frac{30}{61}$ 따라서 a+b=91 이다.

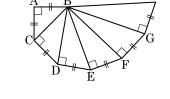
19. 다음 그림과 같이 반지름의 길이가 인 사분원에서 옳지 <u>않은</u> 것은?

- $\tan x = \overline{DE}$ ② $\sin y = \overline{AB}$

 $\Im \tan y = \frac{\overline{AD}}{\overline{DE}} = \frac{1}{\overline{DE}} \ (\because \angle y = \angle z)$

20. 삼각비의 표를 보고 다음을 만족하는 $x \div y + z$ 의 값은?

 $\sin x = 0.9397$


각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
35°	0.5736	0.8192	0.7002
45°	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1,1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

 $\tan y = 0.7002$ $\cos z = 0.9848$ ① 3 ② 5 ③ 6 ④ 10 ⑤ 12

 $x = 70^{\circ}, y = 35^{\circ}, z = 10^{\circ}$ $x \div y + z = 70 \div 35 + 10 = 2 + 10 = 12$

21. 다음 그림에서 $\triangle BGH$ 의 넓이가 $3\sqrt{6}cm^2$ 일 때, △ABC 의 둘레의 길이는?

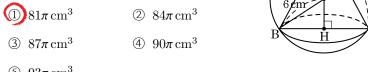
- ① $2(\sqrt{3} + \sqrt{2}) \text{ cm}$
- ② $\sqrt{2}(2 + \sqrt{2})$ cm
- $3 2\sqrt{3}(\sqrt{2}+1) \text{ cm}$
- $4 \ 2(\sqrt{3}+1) \text{ cm}$ ⑤ $\sqrt{3}(1+\sqrt{3})$ cm

$\overline{\mathrm{GH}}=a$ 라고 하면

해설

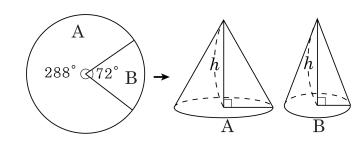
 $\overline{\mathrm{BG}} = \sqrt{a^2 + a^2 + a^2 + a^2 + a^2 + a^2} = a\sqrt{6}$ 일 때,

△BGH의 넓이를 구하면


 $\frac{1}{2} \times a\sqrt{6} \times a = 3\sqrt{6}, a^2 = 6, a = \sqrt{6}$ 이다. $\overline{\mathrm{BC}} = \sqrt{(\sqrt{6})^2 + (\sqrt{6})^2} = 2\sqrt{3} (\,\mathrm{cm})$ 이다.

따라서 $\triangle ABC$ 의 둘레는 $\sqrt{6}+\sqrt{6}+2\sqrt{3}=2\sqrt{6}+2\sqrt{3}(\,\mathrm{cm})$ 이다.

- 22. 다음 그림과 같이 반지름의 길이가 $6 \, \mathrm{cm}$ 인 구에 모선의 길이가 6 $\sqrt{3}\,\mathrm{cm}$ 인 원뿔이 내접할 때, 이 원뿔의 부피는?


 - $3 87\pi \,\mathrm{cm}^3$
 - ⑤ $93\pi \, \text{cm}^3$

해설

 $\triangle OBH$ 에서 $\overline{BH}^2 = 6^2 - \overline{OH}^2 \cdots$ ① $\triangle ABH$ 에서 $\overline{BH}^2 = (6\sqrt{3})^2 - (6 + \overline{OH})^2 \cdots$ ① ①, ⓒ에서 $6^2 - \overline{OH}^2 = (6\sqrt{3})^2 - (6 + \overline{OH})^2$ $12\overline{OH} = 36$ $\therefore \overline{OH} = 3$ (cm) \bigcirc 에서 $\overline{BH}^2=6^2-3^2=27$ $\therefore \overline{BH} = 3\sqrt{3} \text{ (cm)}$ 따라서 원뿔의 부피는 $\frac{1}{3} \times \pi \times (3\sqrt{3})^2 \times (6+3) = 81\pi \text{ (cm}^3)$ 이다.

23. 반지름의 길이가 10 인 원을 다음 그림과 같이 중심각이 288° , 72° 가 되도록 잘라내어 2 개의 고깔을 만들었다. 두 고깔 A, B 의 부피를 각각 x, y 라 할 때, $\frac{x}{y}$ 의 값은?

① $\frac{\sqrt{6}}{24}$ ② $\frac{\sqrt{6}}{12}$ ③ $2\sqrt{6}$ ④ $4\sqrt{6}$ ⑤ $6\sqrt{6}$

i) 호의 길이와 밑면의 둘레

 $A:20\pi \times \frac{288^{\circ}}{360^{\circ}} = 16\pi$

 $\therefore r_A = 8$ $B: 20\pi \times \frac{72^\circ}{360^\circ} = 4\pi$

 $\therefore r_B = 2$ ii) 원뿔의 높이

A: 모선의 길이는 10, 밑면의 반지름의 길이는 8 $h_A = \sqrt{100 - 64} = \sqrt{36} = 6$ B : 선의 길이는 10 , 밑면의 반지름의 길이는 2

 $h_B = \sqrt{100 - 4} = \sqrt{96} = 4\sqrt{6}$

iii) 원뿔의 부피 A : 밑면의 반지름의 길이는 8 , 높이는 6

 $V_A = \frac{1}{3} \times 8 \times 8 \times \pi \times 6 = x$ B : 밑면의 반지름의 길이는 2 , 높이는 $4\sqrt{6}$

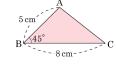
 $V_B = \frac{1}{3} \times 2 \times 2 \times \pi \times 4\sqrt{6} = y$

 $\therefore \frac{x}{y} = \frac{\frac{1}{3} \times 8 \times 8 \times \pi \times 6}{\frac{1}{3} \times 2 \times 2 \times \pi \times 4\sqrt{6}} = \frac{24}{\sqrt{6}} = \frac{24\sqrt{6}}{6} = 4\sqrt{6}$

24. 다음 그림의 직육면체는 $\overline{AB} = 2 \, \mathrm{cm}, \, \overline{BC} = 1 \, \mathrm{cm}, \, \overline{AE} = 4 \, \mathrm{cm}$ 이고, \overline{AG} 는 직육면체의 대각선이다. 점 P 는 점 A 에서 G 까지 직육면체의 표면을 따라 갈 때 최단거리가 되게 하는 \overline{BF} 위의 점일 때, ΔPAG 의 둘레의 길이를 구하여라.

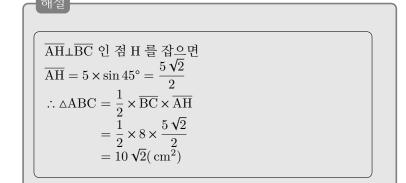
 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $5+\sqrt{21}$ $\underline{\mathrm{cm}}$


▶ 답:

해설

 $\overline{AP} + \overline{PG} = \sqrt{4^2 + 3^2} = 5$ (cm) 또, 대각선 $\overline{AG} = \sqrt{4 + 1 + 16} = \sqrt{21}$ (cm)


 \therefore (\triangle APG의 둘레의 길이) = 5 + $\sqrt{21}$ (cm)

25. 다음은 $\overline{AB}=5\mathrm{cm}$, $\overline{BC}=8\mathrm{cm}$ 이고, $\angle ABC=45^\circ$ 인 $\triangle ABC$ 의 넓이를 구하는 과정이다. 안에 알맞은 것을 바르게 나열한 것은?

 $\overline{AH} \perp \overline{BC}$ 인 점 H 를 잡으면 $\overline{AH} = 5 \times \boxed{} = \frac{5\sqrt{2}}{2}$ $\therefore \triangle ABC = \frac{1}{2} \times \boxed{}$ $= \frac{1}{2} \times 8 \times \frac{5\sqrt{2}}{2}$ $= 10\sqrt{2}(\text{cm}^2)$

- ① $\cos 45^{\circ}, \overline{BC} \times \overline{AH}$ ③ $\sin 45^{\circ}, \overline{BC} \times \overline{AH}$
 - ② $\tan 45^{\circ}, \overline{BC} \times \overline{AH}$ ④ $\sin 45^{\circ}, \overline{AC} \times \overline{BC}$
- $\Im \sin 45^{\circ}, \overline{AB} \times \overline{BC}$

