
- 1. 다음 중 세 변의 길이가 각각 n, n+2, n+3 인 삼각형이 둔각삼각형이 되기 위한 n 의 값으로 옳은 것은?
 - ① 1 ② 3 ③ 4 ④ 5 ⑤ 6

삼각형의 세 변의 조건 : n + (n+2) > n + 3, n > 1

해설

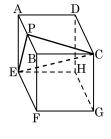
둔각삼각형이 될 조건 : $(n+3)^2 > (n+2)^2 + n^2$ 두 조건을 동시에 만족하는 값은 보기 중에서 3 이다.

다음 그림의 사각형 ABCD는 등변사다리 **2**. 꼴이다. $\overline{AB}=2\,\mathrm{cm},\,\overline{AD}=2\,\mathrm{cm},\,\angle B=$ 45 ° 일 때, BC 의 길이는?

① $\sqrt{2}$ cm

 $2\sqrt{2}$ cm

 $(1+2\sqrt{2})$ cm


 $(4)(2+2\sqrt{2})$ cm $(4+4\sqrt{2})$ cm

 $\triangle ABH$ 는 한 내각의 크기가 $45\,^{\circ}$ 인 직각삼각형이므로 \overline{BH} :

해설

 $\overline{AH} : \overline{AB} = 1 : 1 : \sqrt{2}$ $\overline{BH}:\overline{AH}:2=1:1:\sqrt{2}$ 에서 $\overline{AH}=\overline{BH}=\frac{2}{\sqrt{2}}=\sqrt{2}(\,\mathrm{cm})$ $\therefore \overline{BC} = \sqrt{2} + 2 + \sqrt{2} = 2\sqrt{2} + 2(cm)$

3. 다음 그림과 같이 한 변의 길이가 $4\sqrt{2}$ 인 정육면 체에서 점 P 가 \overline{AB} 의 중점일 때, $\overline{PE} + \overline{PC}$ 의 값이 $a\sqrt{b}$ 이다. a+b 의 값을 구하여라.(단, b는 최소의 자연수)

답:

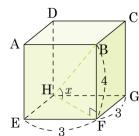
 > 정답:
 a + b = 14

$\overline{PE} = \sqrt{(4\sqrt{2})^2 + (2\sqrt{2})^2} = 2\sqrt{10}$

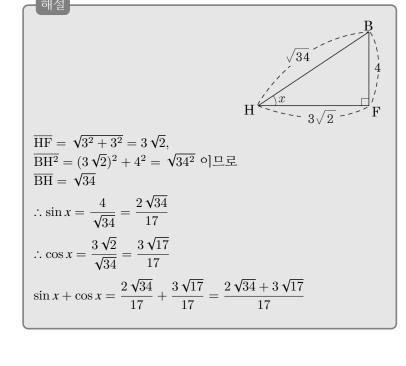
해설

 $\overline{PC} = \sqrt{(4\sqrt{2})^2 + (2\sqrt{2})^2} = 2\sqrt{10}$

 $\overline{\text{PE}} + \overline{\text{PC}} = 4\sqrt{10}$ 이므로 a+b=14 이다.


4. $\tan A = \frac{4}{3}$ 일 때, $\sin A - \cos A$ 의 값을 구하여라.(단, $0^\circ < A < 90^\circ$)

답:


ightharpoonup 정답: $rac{1}{5}$

$$\tan A = \frac{4}{3}$$
이면
$$\therefore \sin A - \cos A = \frac{4}{5} - \frac{3}{5} = \frac{1}{5}$$

다음 그림과 같은 직육면체에서 대각선 $\overline{
m HB}$ **5.** 와 밑면의 대각선 $\overline{
m HF}$ 가 이루는 $\angle
m BHF$ 의 크기를 x 라 할 때, $\sin x + \cos x$ 의 값은?

① $\frac{6\sqrt{17}}{2\sqrt{34}}$ ② $\frac{5\sqrt{34}}{17}$ ③ $\frac{3\sqrt{34} + 2\sqrt{17}}{17}$ ③ $\frac{3\sqrt{34} + 2\sqrt{17}}{17}$

6. $45^{\circ} \le x < 90^{\circ}$ 이고 세 변의 길이가 $\sin x$, $\cos x$, $\tan x$ 인 직각삼각 형일 때, x 의 값을 구하여라.

 ▷ 정답: 45 °

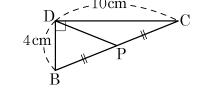
V 01: 10 _

▶ 답:

 $45^{\circ} \le x < 90^{\circ}$ 에서 $\tan x$ 의 값이 가장 크므로 $\tan^2 x = \sin^2 x + \cos^2 x = 1$ $\tan x = 1$ (∵ $\tan x > 0$)

7. 다음 표는 삼각비의 값을 소수 둘째 자리까지 나타낸 것이다. 다음 중 옳지 <u>않은</u> 것은?

각도	sin	cos	tan
32°	0.53	0.85	0.62
33°	0.54	0.84	0.65
34°	0.56	0.83	0.67
35°	0.57	0.82	0.70
36°	0.59	0.81	0.73
37°	0.60	0.80	0.75


 $3 \tan 36^{\circ} = 0.73$

① $\sin 32^{\circ} = 0.53$ ② $\cos 34^{\circ} = 0.83$ $4 \sin 35^{\circ} = 1.14$

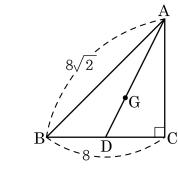
 $3\cos 36^\circ = 2.44$

 $\cos 36^{\circ} = 0.81$ 이므로 $3\cos 36^{\circ} = 2.43$ 이다.

8. 직각삼각형 BCD 에서 $\overline{BD}=4\mathrm{cm},\ \overline{CD}=10\mathrm{cm}$ 이고, 점 P 가 \overline{BC} 를 이등분할 때, \overline{PD} 의 길이는?

 $\sqrt{29} \text{ cm}$ $\sqrt{4} \sqrt{2} \text{ cm}$

② $\sqrt{30} \, \text{cm}$ ③ $\sqrt{33} \, \text{cm}$


 $3 \sqrt{31} \, \mathrm{cm}$

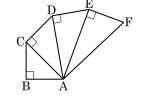
피타고라스 정리에 따라서

해설

 $\overline{BC^2}=\overline{BD^2}+\overline{CD^2}=4^2+10^2=116$ $\overline{BC}=2\sqrt{29}\,\mathrm{cm}$ 점 P 가 \overline{BC} 를 이등분하므로 $\overline{BP}=\overline{CP}=\sqrt{29}\,\mathrm{cm}$ 그런데 직각삼각형의 빗변의 중점은 직각삼각형의 외심이므로 $\overline{DP}=\overline{BP}=\overline{CP}$ 이므로 $\overline{DP}=\sqrt{29}\,\mathrm{cm}$ 이다.

9. 다음 그림과 같이 $\angle C = 90^\circ$ 인 $\triangle ABC$ 에서 \overline{AD} 는 중선이고, 점 G 는 무게중심일 때, $\overline{\mathrm{DG}}$ 의 길이를 구하여라.

① $\frac{\sqrt{5}}{3}$ ② $\frac{2\sqrt{5}}{3}$ ③ $\sqrt{5}$ ④ $\frac{4\sqrt{5}}{3}$ ⑤ $\frac{5\sqrt{5}}{3}$


삼각형 ABC 에서 피타고라스 정리에 따라 $\overline{\mathrm{AC}}^2 = (8\,\sqrt{2})^2 - 8^2 =$ $\overline{AC} > 0$ 이므로 $\overline{AC} = 8$ 이다.

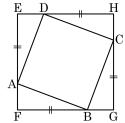
점 D 는 변 BC 를 이등분하므로 $\overline{\text{CD}} = 4$ 따라서 삼각형 ACD 에서 피타고라스 정리에 따라 $\overline{\mathrm{AD}}^2$ =

 $4^2 + 8^2 = 16 + 64 = 80$ 이다. $\overline{\mathrm{AD}} > 0$ 이므로 $\overline{\mathrm{AD}} = 4\sqrt{5}$

 $\overline{\mathrm{DG}}$ 는 $\overline{\mathrm{AD}}$ 의 길이의 $\frac{1}{3}$ 이므로 $\overline{\mathrm{DG}} = \frac{4\sqrt{5}}{3}$ 이다.

10. 다음 그림에서 $\overline{BA} = \overline{BC} = \overline{CD} = \overline{DE} = \overline{EF}$ 이고, $\triangle ADE$ 의 둘레가 $3+3\sqrt{3}$ 일 때, $\triangle AEF$ 의 넓이를 구하여라.

 답:


 ▷ 정답:
 3

 $\overline{\mathrm{BA}} = a$ 라고 하면 $\overline{\mathrm{AD}} = \sqrt{a^2 + a^2 + a^2} = a\sqrt{3}, \ \overline{\mathrm{AE}} =$

 $\sqrt{(a\,\sqrt{3})^2+a^2}=2a$ 이다. 따라서 $\triangle {\rm ADE}$ 의 둘레는 $a+a\,\sqrt{3}+2a=3a+a\,\sqrt{3}=3+3\,\sqrt{3}, a=\sqrt{3}$ 이고

 \triangle AEF의 넓이는 $\frac{1}{2} \times 2\sqrt{3} \times \sqrt{3} = 3$ 이다.

11. 다음 그림에서 사각형 ABCD 와 EFGH 는 모두 정사각형이고 $\square ABCD = 73 \, \mathrm{cm}^2$, $\Box \mathrm{EFGH} = 121\,\mathrm{cm}^2$, $\overline{\mathrm{BF}} > \overline{\mathrm{BG}}$ 일 때, $\overline{\mathrm{BG}}$ 의 길이는?

 $\bigcirc 3 \, \mathrm{cm}$ 4 8 cm

 $34 \, \mathrm{cm}$

 $\square ABCD = 73 \, \mathrm{cm}^2, \, \square EFGH = 121 \, \mathrm{cm}^2$ 이므로 $\overline{AB} = \sqrt{73} \, \mathrm{cm},$ $\overline{\text{FG}}$ cm = 11 cm 이다. $\overline{\mathrm{BG}}=x\,\mathrm{cm},\,\overline{\mathrm{FB}}=y\,\mathrm{cm}$ 라고 할 때,

x+y=11, $x^2+y^2=73$ 이 성립한다. y=11-x 를 대입하여 정리하면 $x^2-11x+24=0$ 인수분해를 이용하면 (x-3)(x-8)=0 이므로 x=3 (: $\overline{\mathrm{BF}}>$

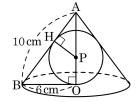
 $\overline{\mathrm{BG}}$)이다.

12. 길이가 6 cm , 8 cm 인 두 개의 막대가 있다. 여기에 막대 하나를 보태서 직각삼각형을 만들려고 한다. 필요한 막대의 길이로 가능한 것을 모두 고르면?

① $\sqrt{10} \, \text{cm}$ ② $10 \, \text{cm}$ ③ $100 \, \text{cm}$ ④ $2 \, \sqrt{7} \, \text{cm}$ ⑤ $28 \, \text{cm}$

-해설 가능한 막대의 길이를 *x* cm 라 하자.

② x > 8 이면 6+8>x(m) 이고 6²+8² = x²


 $\therefore x = 10 \text{ (cm)}$

④ x < 8 이면 x + 6 > 8 이고 $x^2 + 6^2 = 8^2$

 $\therefore x = \sqrt{28} = 2\sqrt{7} \text{(cm)}$

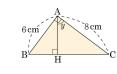
따라서 가능한 막대의 길이는 $10\,\mathrm{cm}$ 또는 $2\,\sqrt{7}\,\mathrm{cm}$ 이다.

13. 다음 그림과 같이 밑면의 반지름의 길이가 6cm, 모선의 길이가 10cm 인 원뿔에 내접하는 구가 있다. 이 구의 반지름의 길이는?

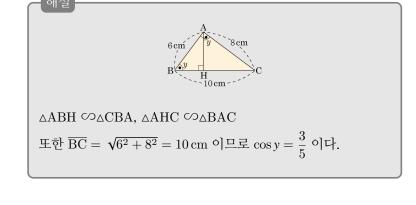
① 3cm ④ 15 √3cm

② 45cm 45 ③ 15cm

.


해설

 $\overline{AO} = \sqrt{10^2 - 6^2} = 8$


내접한 구의 반지름의 길이를 x라 두면 $\overline{OP} = x = \overline{HP}, \ \overline{AP} = 8 - x$ 이다. $\triangle AHP \hookrightarrow \triangle AOB$ 이므로 ($\because \angle HAP$ 를 공유) $\overline{AP} : \overline{AB} = \overline{HP} : \overline{BO}$ 8 - x : 10 = x : 6 x = 3 (cm)

x = 3 (cm)

14. 다음 그림의 $\triangle ABC$ 에서 $\angle A=90^\circ$, $\overline{AB}=6cm$, $\overline{AC}=8cm$, $\overline{AH} \bot \overline{BC}$ 일 때, $\cos y$ 의 값은?

 $\bigcirc 3 \over 5$ ② 1 ③ $\frac{6}{5}$ ④ $\frac{7}{5}$ ⑤ $\frac{8}{5}$

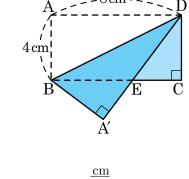
- 15. 다음과 같은 직각삼각형에서 $\tan C \sin C$ 의 값으로 바르게 구한 것은?
 - 8 | | | | | | | | ① $\frac{63}{255}$ ④ $\frac{67}{255}$

 $\overline{BC} = \sqrt{17^2 - 8^2} = \sqrt{289 - 64} = \sqrt{225} = 15$ $\tan C \sin C = \frac{8}{15} \times \frac{8}{17} = \frac{64}{255}$

- **16.** 함수 $y = \sin^2 x 2\sin x + 2$ 의 최댓값과 최솟값은? (단, $0^{\circ} \le x \le 90^{\circ}$
 - ① 최댓값 2, 최솟값 1 ② 최댓값 3, 최솟값 1
 - ⑤ 최댓값 1 , 최솟값 -3
 - ③ 최댓값 2 , 최솟값 -1 ④ 최댓값 4 , 최솟값 1

해설 $\sin x = A \ (0 \le A \le 1)$ 라 하면

 $y = A^2 - 2A + 2 = (A - 1)^2 + 1$ A=0일 때, 최댓값 2A=1일 때, 최솟값 $1 (0 \le A \le 1)$


- **17.** $\tan(A-15^\circ)=1$ 이고, $x^2-2x\tan A-3(\tan A)^2=0$ 의 두 근을 구하면? (단, 0° < A < 90°)
 - ① $3\sqrt{3}$, $2\sqrt{3}$ ② $-\sqrt{3}$, $3\sqrt{3}$ ③ $2\sqrt{3}$ ④ $2\sqrt{3}$ ⑤ $-\sqrt{3}$, $-3\sqrt{3}$

해설

 $x^2 - 2\tan 60^\circ x - 3(\tan 60^\circ)^2 = x^2 - 2\sqrt{3}x - 9 = 0$ 이다. 근을 구하면 $(x - 3\sqrt{3})(x + \sqrt{3}) = 0$, $x = 3\sqrt{3}$, $-\sqrt{3}$ 이다.

 $an 45^\circ = 1$ 이므로 A - $15^\circ = 45^\circ$, A = 60° 이다. 따라서

18. 가로의 길이가 $8\,\mathrm{cm}$, 세로의 길이가 $4\,\mathrm{cm}$ 인 직사각형 모양의 종이를 다음 그림과 같이 대각선 BD 를 접는 선으로 하여 접었을 때, $\overline{\mathrm{EC}}$ 의 길이를 구하여라.

▷ 정답: 3<u>cm</u>

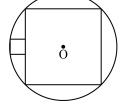
▶ 답:

ΔDCE 와 ΔBA'E 에서

해설

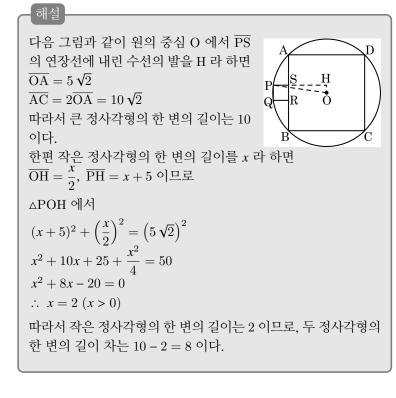
 $\angle DCE = \angle BA'E = 90^{\circ}$

 $\angle BEA' = \angle DEC(맞꼭지각)$ $\overline{\mathrm{BA'}} = \overline{\mathrm{DC}}$ 이므로

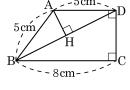

 $\triangle \text{DCE} \equiv \triangle \text{BA'E}$

따라서 $\overline{EC} = x(cm)$ 일 때,

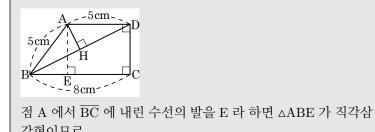
 $\overline{\mathrm{A'E}} = x \, \mathrm{cm} , \overline{\mathrm{BE}} = 8 - x (\, \mathrm{cm})$


 $(8-x)^2 = x^2 + 4^2$ 따라서 $x = 3 \,\mathrm{cm}$ 이다.

19. 다음 그림과 같이 두 정사각형의 한 변이 붙어있으면서 반지름의 길이가 5√2 인 원 O 에 내접하고 있다. 두 정사각형의 한 변의 길이의 차를 구하여라.


답:

➢ 정답: 8


20. 다음 그림과 같은 $\square ABCD$ 에서 \overline{AB} = $\overline{\rm AD}=5 {\rm cm}, \; \overline{\rm BC}=8 {\rm cm}, \; \angle {\rm C}=\angle {\rm D}=90\,^{\circ}$ 이다. 점 A 에서 $\overline{\mathrm{BD}}$ 에 내린 수선의 발을 H 라 할 때, $\overline{\mathrm{AH}}$ 의 길이를 구하여라.

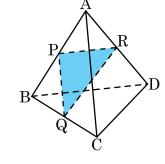
 $\underline{\mathrm{cm}}$

답: **▷ 정답** : √5<u>cm</u>

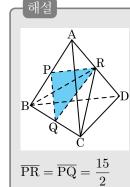
해설

각형이므로 $\overline{AE}^2 = \overline{AB}^2 - \overline{BE}^2 = 5^2 - (8-5)^2 = 16$ $\therefore \overline{AE} = 4(cm) \ (\because \overline{AE} > 0)$

 $\therefore \overline{CD} = \overline{AE} = 4(cm)$


△BCD 에서

 $\overline{BD}^{2} = \overline{BC}^{2} + \overline{CD}^{2} = 8^{2} + 4^{2} = 80$ $\therefore \overline{BD} = \sqrt{80} = 4\sqrt{5} \text{(cm) } (\because \overline{BD} > 0)$


△ABH 에서 $\overline{AH}^2 = 5^2 - (2\sqrt{5})^2 = 25 - 20 = 5(cm)$

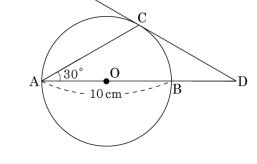
 $\therefore \overline{AH} = \sqrt{5}(cm) \ (\because \overline{AH} > 0)$

 ${f 21}$. 다음 그림과 같이 한 변의 길이가 ${f 15}$ 인 정사면체 ${f A}-{f BCD}$ 에서 모서리 AB, BC, AD 의 중점을 각각 P, Q, R 이라 할 때, 삼각형 PQR 의 넓이를 구하여라.

ightharpoonup 정답: $rac{225}{8}$

$$\Delta RBC 는 \overline{BR} = \overline{RC}$$
 인 이등변삼각형이므로

 $\angle RQC = 90^{\circ}$ 이다.


따라서 $\overline{
m BR}$ 과 $\overline{
m RC}$ 은 각각 정삼각형 ABD 와 ACD 의 높이이므

로 $\overline{RC} = \overline{BR} = \frac{\sqrt{3}}{2} \times 15 = \frac{15}{2} \sqrt{3}$ 이고

$$\overline{\mathrm{BQ}} = \frac{15}{2}$$
 이므로

 $\therefore \triangle PQR = \frac{1}{2} \times \frac{15}{2} \times \frac{15}{2} = \frac{225}{8}$

22. 다음 그림과 같이 선분 AB 를 지름으로 하는 원 O 위의 한 점 C 에서 의 접선과 지름 AB 의 연장선과의 교점을 D 라 한다. $\overline{AB}=10\,\mathrm{cm}$, $\angle BAC=30^\circ$ 일 때, \overline{BD} 의 길이는?

① 3cm ④ 4.5cm ② 3.5cm ③ 5cm ③ 4cm

해설

점 B 와 C 를 이으면 ∠BCD = ∠BAC = 30°
∠ACB = 90° 이므로 ∠ABC = 60°
△CBD 에서
∠BDC = ∠ABC - ∠BCD = 60° - 30° = 30°
∴ BD = BC = 10 sin 30° = 10 × 1/2 = 5(cm)

A 30° 0 60° B

23. 등식 $\cos(3x - 10^{\circ}) = \sin(x + 10^{\circ})$ 를 만족시키는 x 의 값은?

① 10° ② 15° ③ 22.5° ④ 25° ⑤ 30

 $3x - 10^{\circ} + x + 10^{\circ} = 90^{\circ}$ $4x = 90^{\circ}$

 $4x = 90^{\circ}$ $\therefore x = 22.5^{\circ}$

 $\dots \quad x = 22.$