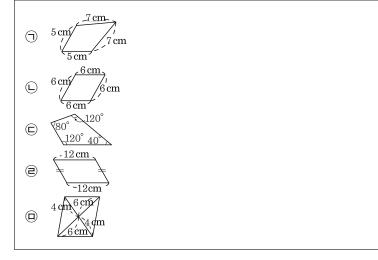
1. 다음 사각형 중에서 평행사변형을 모두 골라라.



▶ 답:

답:

■ 답:

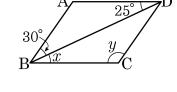
▷ 정답: ⑤

▷ 정답: ②

▷ 정답: □

⑥, @두 쌍의 대변의 길이가 각각 같다. @두 대각선이 서로 다른 것을 이등분한다.

2. 평행사변형 ABCD 에서 \angle ABD = 30°, \angle ADB = 25°일 때, \angle x + \angle y 의 값을 구하여라.



▷ 정답: 150 °

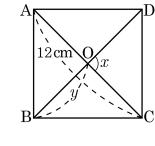
평행사변형에서∠ABD = ∠BDC = 30°이고

해설

▶ 답:

 $\angle x + \angle y + \angle BDC = 180$ °이므로 $\angle x + \angle y = 180$ ° -30° = 150°

다음 그림의 정사각형 ABCD 에서 x, y 의 값을 각각 구하여라. 3.



▶ 답:

 $\underline{\mathrm{cm}}$ > 정답: ∠x = 90<u>°</u>

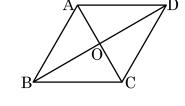
▷ 정답: y = 6<u>cm</u>

▶ 답:

정사각형은 두 대각선이 수직이등분하므로

 $\angle x = 90^{\circ}$, $\, y = 12 \div 2 = 6 \, \mathrm{cm}$

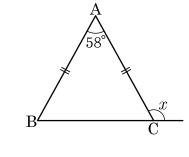
4. 다음 그림과 같은 평행사변형 ABCD 가 정사각형이 되기 위한 조건을 고르면?



- ① $\angle B = 90^{\circ}$
- \bigcirc $\overline{AB} = \overline{BC}$
- $\overline{AC} = \overline{BD}$ $\overline{AC} = \overline{BD}$ $\overline{AB} = \overline{BC}$
- $\textcircled{4} \overline{AC} \bot \overline{BD}$

정사각형은 네 변의 길이가 같고, 네 각이 90° 로 모두 같아야한

5. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC 에서 $\angle A=58^\circ$ 일 때, $\angle x$ 의 크기는?



②119° ③ 120° ④ 121°

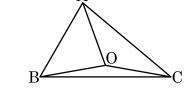
⑤ 122°

① 118°

 $\triangle ABC$ 는 이등변삼각형이므로 $\angle ACB = \frac{1}{2}(180^{\circ} - 58^{\circ}) = 61^{\circ}$

 $\therefore \angle x = 180^{\circ} - 61^{\circ} = 119^{\circ}$

6. 다음 그림의 $\triangle ABC$ 에서 점 O 는 외심이고 $\angle AOB: \angle COA: \angle BOC=2:3:4$ 일 때, $\angle ABC$ 의 크기를 구하여라.



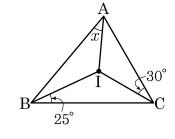
➢ 정답: 60 º

V 88 ⋅ 00 _

▶ 답:

 $\angle ABC = 360^{\circ} \times \frac{3}{(2+3+4)} \times \frac{1}{2} = 60^{\circ}$

7. 다음 그림에서 $\triangle ABC$ 에서 세 각의 이등분선의 교점을 I라고 할 때, $\angle IBC = 25$ °, $\angle ICA = 30$ °이다. $\angle IAB$ 의 크기는?



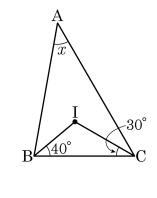
① 20° ② 25° ③ 30°

⑤ 40°

점 I가 △ABC의 내심이므로

 $\angle x + 30^{\circ} + 25^{\circ} = 90^{\circ}$ \therefore $\angle x = 35^{\circ}$

8. 다음 그림에서 점 I가 삼각형의 내심일 때, $\angle x$ 의 크기는?



① 20° ② 30°

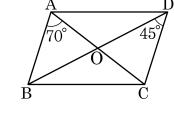
③40°

④ 50°

⑤ 60°

 $\angle x = 180^{\circ} - (40^{\circ} + 30^{\circ}) \times 2 = 40^{\circ}$

9. 평행사변형ABCD 에서 $\angle BAC = 70^\circ$, $\angle BDC = 45^\circ$ 일 때, $\angle OBC + \angle OCB$ 의 크기는?



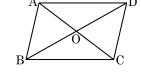
① 70° ② 65° ③ 60° ④ 50° ⑤ 45°

∠ABO = 45° (엇각) ∠OBC + ∠OCB 는 △OBC 외각

 $\therefore \angle AOB = 65^{\circ}$

해설

10. 다음 그림에서 □ABCD 는 평행사변형이고,
 점 O 는 두 대각선의 교점이다. □ABCD = 100cm² 일 때, △ABO 의 넓이는?



① 15cm² ④ 30cm² ② 20cm^2 ③ 35cm^2

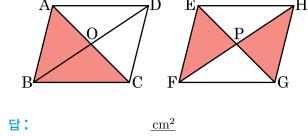
 $325 \mathrm{cm}^2$

O OCCII

© 000m

 ΔBOC 와 ΔAOD 는 같다.

 $\triangle AOD + \triangle BOC = \triangle AOB + \triangle DOC$ 이다. 그러므로 $\triangle ABO$ 의 넓이는 평행사변형 ABCD 의 $\frac{1}{4}$ 이므로 $25 \mathrm{cm}^2$ 이다. 11. 다음 평행사변형 ABCD 와 EFGH 는 합동이다. 평행사변형 ABCD 의 색칠한 부분의 넓이가 $24 \mathrm{cm}^2$ 일 때, 평행사변형 EFGH 의 색칠한 부분의 넓이를 구하여라.



 답:
 cm

 > 정답:
 24 cm²

평행사변형 ABCD 에서 색칠한 부분의 넓이는 전체의 절반이

해설

된다. 평행사변형 EFGH 의 넓이에서 색칠한 부분의 넓이는 $\triangle PEF + \triangle PGH = \triangle PEH + \triangle PFG$ 이므로 전체의 절반이 된다. 따라서

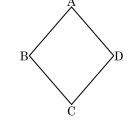
ΔPGH = ΔPEH + ΔPFG 이므도 전세의 설반이 된다. 따라지 평행사변형 ABCD 의 색칠한 부분의 넓이와 평행사변형 EFGH 의 색칠한 부분의 넓이는 같다.

12. 다음 □ABCD 가 마름모일 때, 옳은 것은?

② ∠A < 90° 이다.

① ∠A = ∠B 이다.

- @ ZM \ 30 |-
- ③ AB = AC 이다.
 ④ AC = BD 이다.
- ③ AC⊥BD 이다.
- MOTDD 1-1



마름모의 두 대각선은 서로 다른 것을 수직이등분하지만 그 길

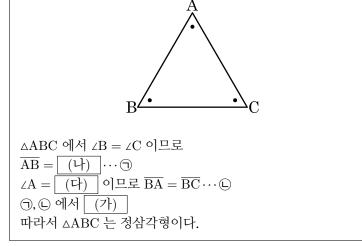
이는 같지 않다. 따라서 ĀC⊥BD 이다. ______

- 13. 다음 사각형 중에서 두 대각선의 길이가 같은 사각형을 모두 고르면? (정답 2 개)
 - ① 사다리꼴 ② 평행사변형 ③ 직사각형
 - ④ 정사각형 ⑤ 마름모

대각선의 길이가 같은 사각형은 직사각형, 정사각형이다.

| 대스

14. 다음은 「세 내각의 크기가 같은 삼각형은 정삼각형이다.」를 보이는 과정이다.



(개 ~ 따에 들어갈 것을 차례로 쓴 것은?

① $\overline{AB} = \overline{BC} = \overline{CA}$, \overline{AC} , $\angle B$

 $\overline{\text{AB}} = \overline{\text{BC}} = \overline{\text{CA}} \text{ , } \overline{\text{AC}} \text{ , } \angle{\text{C}}$

③ $\angle A = \angle B = \angle C$, \overline{BC} , $\angle A$ ④ $\angle A = \angle B = \angle C$, \overline{BC} , $\angle C$

 \bigcirc $\angle A = \angle B = \angle C$, \overline{AC} , $\angle C$

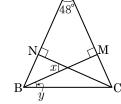
△ABC 에서 ∠B = ∠C 이므로

 $\overline{AB} = (\overline{AC}) \cdots \bigcirc$ $\angle A = (\angle C)$ 이므로 $\overline{BA} = \overline{BC} \cdots \bigcirc$ \bigcirc , \bigcirc 에서 $(\overline{AB} = \overline{BC} = \overline{CA})$ 따라서 $\triangle ABC$ 는 정삼각형이다. ${f 15}$. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB}=\overline{AC}$, $\angle A=48^\circ$ 인 이등변삼각형이다. 점 B, C 에서 대변에 내 린 수선의 발을 각각 M, N 이라 할 때, $\angle x + \angle y$ 의 크기는?

① 72° ⑤ 88°

④ 84°

 $3 \ 80^{\circ}$



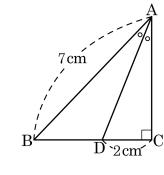
 $\triangle BNC \equiv \triangle CMB(RHA 합동)$

해설

 $\triangle \mathrm{BMC}$ 에서, $\angle \mathrm{MCB} = 66^\circ,\ y = 24^\circ$,

 \angle MCN = 66° – 24° = 42° $\therefore x = 180$ ° – (42° + 90°) = 48° 따라서 $\angle x + \angle y = 48^{\circ} + 28^{\circ} = 72^{\circ}$ 이다.

16. 다음 그림에서 $\angle C = 90^\circ$ 인 직각삼각형 ABC 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 하고, $\overline{AB}=7\mathrm{cm},\ \overline{DC}=2\mathrm{cm}$ 일 때, $\triangle ABD$ 의 넓이는?



 $37cm^2$ $4 \text{ } 8\text{cm}^2$

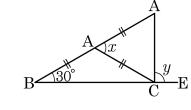
 \bigcirc 9cm²

 \bigcirc 6cm²

점 D 에서 \overline{AB} 에 내린 수선과의 교점을 H 라 하면, $\triangle AHD$ = △ACD(RHA합동) $\overline{\rm DC}=\overline{\rm DH}=2{\rm cm}$ $\therefore \triangle ABD = \frac{1}{2} \times 7 \times 2 = 7 (\,\mathrm{cm}^2)$

 \bigcirc 5cm²

17. 다음 그림에서 $\overline{AB}=\overline{AC}=\overline{AD}$, $\angle ABC=30^\circ$ 일 때, $\angle x+\angle y$ 의 크기를 구하여라.



① 150°

② 160°

 3170°

4 180°

 \bigcirc 190°

 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}=\overline{\mathrm{AD}}$ 이므로 빗변의 중점인 점 A 는 직각삼각형의

외심이다. $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 이므로 $\Delta \mathrm{ABC}$ 는 이등변삼각형

 $\therefore \angle ACB = \angle ABC = 30^\circ$

삼각형의 외각의 성질에 의해 $\angle DAC = \angle ACB + \angle ABC =$ $30^\circ + 30^\circ = 60^\circ$

 $\therefore \angle x = 60^{\circ} \cdots \bigcirc$

 $\overline{\mathrm{CA}} = \overline{\mathrm{AD}}$ 이므로

△ACD 는 이등변삼각형

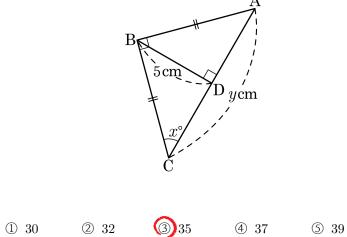
 $\therefore \angle ACD = \angle CDA = 60^{\circ} (\because \bigcirc)$

세 내각의 크기가 같으므로 삼각형 ACD 는 정삼각형이다.

 $\angle DCB = \angle ACD + \angle ACB = 60^{\circ} + 30^{\circ} = 90^{\circ}$ $\angle DCE = 90^{\circ}$ 이다.

 $\therefore \angle y = 90^{\circ} \cdots \bigcirc$ ①, ⓒ에 의해서 $\angle x + \angle y = 60^\circ + 90^\circ = 150^\circ$

 ${f 18}$. 다음 그림과 같이 ${f \overline{AB}}={f \overline{BC}}$, ${\it \angle B}=90\,^{\circ}$ 인 직각이등변삼각형 ${\it ABC}$ 에서 $\angle B$ 의 이등분선과 \overline{AC} 의 교점을 D라 하자. 이 때, x-y의 값은?



335

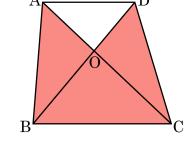
$$\angle C = \frac{1}{2}(180 \degree - 90 \degree) = 45 \degree$$

 $\therefore x = 45$
 $\angle C = \angle CBD = 45 \degree \circ$] 므로

 $\Delta {
m CBD}$ 는 $\overline{
m BD}=\overline{
m CD}=5\,{
m cm}$ 인 이등변삼각형이고, 점 D는 $\overline{
m AC}$ 의 중점이므로 y=10

 $\therefore x - y = 45 - 10 = 35$

19. 다음 그림과 같이 $\overline{\rm AD}//\overline{\rm BC}$ 인 사다리꼴 ABCD에서 $\triangle \rm ABD$ 의 넓이가 90 일 때, 색칠한 부분의 넓이를 구하여라. (단, $3\overline{\rm DO}=2\overline{\rm BO}$)



➢ 정답: 189

▶ 답:

ΔAOD : ΔAOB = 2 : 3 이므로

 $\triangle AOB = \frac{3}{5} \times \triangle ABD = 54$

o 이때 △ABD = △ACD 이므로

ΔAOB = ΔCOD = 54 또, ΔCOD : ΔBCO = 2 : 3 이므로

54 : △BCO = 2 : 3 ∴ △BCO = 81 (색칠한부분의 넓이) = 54 + 54 + 81 = 189