1. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등 분선과 \overline{BC} 의 교점을 D라 하자. $\overline{DC}=11\mathrm{cm},\ \angle BAD=33\,^\circ$ 일 때, x+y의 값은?

33° y Y C

① 48

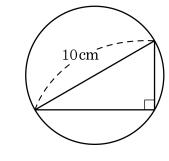
② 58

3 68

4 78

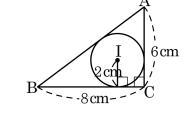
⑤ 88

2. 다른 그림와 같이 빗변의 길이가 10 cm 인 직각삼각형의 외접원의 반지름의 길이를 구하여라.



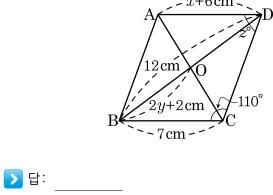
) 답: _____ cm

3. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. 내접원의 반지름의 길이는 $2 \mathrm{cm}$ 이고, \triangle ABC 는 직각삼각형일 때, \triangle ABC 의 둘레의 길이를 구하여라.

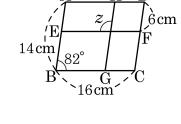


> 답: ____ cm

4. 평행사변형 ABCD 에서 $\overline{BC}=7\mathrm{cm},\ \overline{BD}=12\mathrm{cm},\angle BCD=110^\circ$ 일 때, z-x-y 의 값을 구하여라.(단, 단위생략)



5. 다음 그림의 평행사변형 ABCD 에서 $\overline{\rm AD}$ $\#\overline{\rm EF}$, $\overline{\rm AB}$ $\#\overline{\rm HG}$ 일 때, z 의 값은?

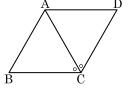


④ 92°

⑤ 98°

① 82° ② 86° ③ 90°

6. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle BCA = \angle DCA$ 이면 $\Box ABCD$ 는 어떤 사각 형인가?



- ① 평행사변형 ② 사다리꼴 ④ 정사각형
 - ⑤ 마름모
- ③ 직사각형

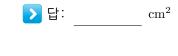
7. 다음 그림에서 $\Box ABCD$ 는 $\overline{AB}=\overline{AD}$ 인 등변사다리꼴이다. $\overline{AD}=5~\mathrm{cm}$, $\Delta C=60^\circ$ 일 때, $\Box ABCD$ 의 둘레의 길이를 구하여라.

B 60° (

▶ 답: _____

8. 다음 그림의 사각형 ABCD 에서 $\overline{\rm AD}$ $/\!/\!\!/\,\overline{\rm BC}$ 이고, $\Delta \rm ABC$ 의 넓이가 $15{\rm cm}^2$ 일 때, $\Delta \rm DBC$ 의 넓이를 구하여라.

B



9. 그림에서 $\overline{AB}=\overline{AC},\overline{BD}=\overline{BC}$ 이고 $\angle D=70^\circ$ 일 때, $\angle x$ 의 크기를 구하여라.

A 70°

③ 80°

 90°

① 60°

② 70°

 ${f 10}$. 다음과 같이 모양이 서로 다른 이등변삼각형 3개가 있다. 이때, x+y+z의 값은 ?

ycm

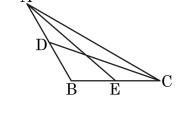
② 19cm

 $320 \mathrm{cm}$

4 21cm

 \bigcirc 22cm

11. 다음 그림과 같이 $\overline{AB}=\overline{BC}$ 인 이등변삼각형 ABC 의 꼭짓점 A, C 에서 대변의 중점과의 교점을 각각 D, E 라고 할 때, $\overline{AE}=\overline{CD}$ 임을 증명하는 과정이다. 3~© 에 들어갈 말을 알맞게 쓴 것을 고르면?



[가정] $\overline{AB} = \overline{BC}$, 점 D, E 는 \overline{AB} 와 \overline{BC} 의 중점 [결론] $\overline{AE} = \overline{CD}$ [증명] $\triangle ADC$ 와 $\triangle CEA$ 에서 (②))는 공통 ··· ① $\angle DAC = \angle ECA \cdots \bigcirc$ 또 $\overline{AD} = \frac{1}{2}\overline{AB}$, $\overline{CE} = \frac{1}{2}\overline{BC}$ 이고 $\overline{AB} = \overline{BC}$ 이므로 (④) ··· © ③, ②, ②에서 $\triangle ADC$ 와 $\triangle CEA$ 는 SAS 합동 따라서 (③)

② ĀE, ĀE = CD, ĀE 는 CD 와 길이가 같다.

① \overline{AE} , \overline{AD} = \overline{CE} , \overline{AB} 는 \overline{CB} 와 길이가 같다.

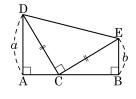
- ③ AC, AD = CE, AB 는 CB 와 길이가 같다.
 ④ AC, AE = CD, AB 는 CB 와 길이가 같다.
- ⑤ \overline{AC} , $\overline{AD} = \overline{CE}$, $\overline{AE} \leftarrow \overline{CD}$ 와 길이가 같다.

12. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle CAD = 75^{\circ}$ 일 때, $\angle x$ 의 크기는?

B 1x C

① 20° ② 25° ③ 30° ④ 35° ⑤ 40°

13. 다음 그림에 대한 설명으로 옳지 <u>않은</u> 것 은?



- ① $\angle ADC = \angle ECB$
- ② $\angle CDE = \angle CEB$ $\textcircled{4} \ \triangle ACD \equiv \triangle BEC$

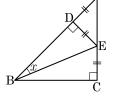
각형 ABC 에서 $\overline{\mathrm{AD}}=\overline{\mathrm{DE}}=\overline{\mathrm{EC}}$ 일 때, $\angle x$ 의 크기는? ① 22°

14. 다음 그림과 같이 $\overline{AC} = \overline{BC}$ 인 직각이등변삼

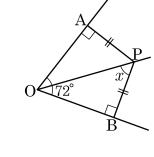
4 23.5°

 22.5° ⑤ 25°

③ 23°



15. 다음 그림에서 $\overline{\mathrm{PA}}=\overline{\mathrm{PB}}$, $\angle\mathrm{AOB}=72^\circ$ 일 때, $\angle x$ 의 크기를 구하여라.



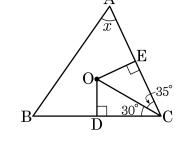
③ 54°

4 56°

⑤ 58°

① 50° ② 52°

16. 다음 그림에서 점 O 가 \overline{AC} , \overline{BC} 의 수직이등분선의 교점일 때, $\angle x$ 의 크기는?



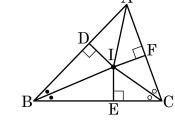
4 70°

③ 60°

① 40°

② 50°

17. 다음은 '삼각형 ABC의 세 내각의 이등분선은 한 점에서 만난다'를 나타내는 과정이다. ⊙ ~ @ 중 잘못된 것은?



∠B, ∠C의 이등분선의 교점을 I라 하면
i) BI는 ∠B의 이등분선이므로
ΔBDI ≡ ΔBEI ∴ ID = (③)
ii) CI는 ∠C의 이등분선이므로 ΔCEI ≡ ΔCFI ∴ IE =
(⑥)
iii) ID = (⑤) = (⑥)
iv) ID = IF이므로 ΔADI ≡ (⑥)
∴ ∠DAI = (⑧)
마라서 AI는 ∠A의 (⑩)이다.
마라서 ΔABC의 세 내각의 이등분선은 한 점에서 만난다.

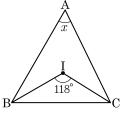
④ ② : ∠FAI ⑤ ② : 이등분선

① \bigcirc : $\overline{\text{IE}}$ ② \bigcirc : $\overline{\text{IF}}$ ③ \bigcirc : $\triangle BDI$

- **18.** 다음 그림의 \triangle ABC에 대하여 점 I는 내심이고, x:y:z=2:3:5이다. 이때, $\angle y+\angle z$ 값을 구하여라.
 - B

) 답: _____ °

19. 다음 그림에서 점 I 는 △ABC 의 내심이고,∠BIC = 118° 일 때, ∠x 의 크기를 구하여라.

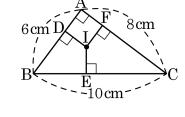


답: ____

20. △ABC 의 내접원의 지름의 길이가 18 이고 △ABC 의 넓이가 63 일 때, 이 삼각형의 둘레의 길이를 구하면?

① 12 ② 13 ③ 14 ④ 15 ⑤ 16

21. 다음 그림에서 점 I 는 \triangle ABC의 내심이다. \overline{AD} 의 길이는?

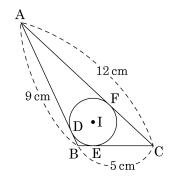


④ 2.2cm

① 1.6cm

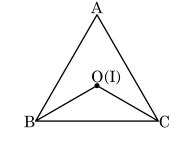
- ② 1.8cm ⑤ 2.5cm
- ③ 2cm

22. 다음 그림에서 점 I는 △ABC의 내심이고, 세점 D, E, F는 각각 내접원과세변 AB, BC, CA의 접점이다. 이때, AF의 길이를 구하여라.



> 답: _____ cm

23. 다음 그림과 같이 $\triangle ABC$ 의 외심 O 와 내심 I 가 일치할 때, 다음 중 옳지 <u>않은</u> 것은?

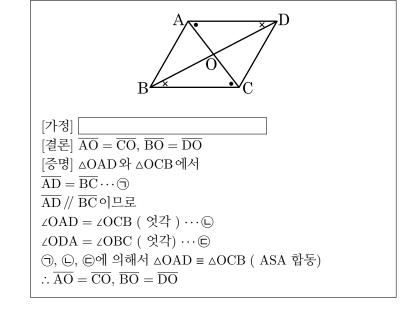


 \bigcirc $\angle BOC = 120^{\circ}$

① $\angle ABO = \angle BCO$

- ② $\overline{AB} = \overline{BC}$ ④ $\angle A = 2\angle OCB$

24. 다음은 '평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.' 를 증명한 것이다. 가정으로 옳은 것은?

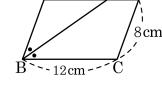


② □ABCD에서 AB = DC, AD // BC

① $\Box ABCD$ 에서 $\overline{AB} = \overline{DC}, \ \overline{AD} = \overline{BC}$

- ③ $\Box ABCD$ 에서 $\overline{AB} // \overline{DC}$, $\overline{AD} = \overline{BC}$
- ④ □ABCD에서 ĀB // DC, ĀD // BC ⑤ □ABCD에서 ĀB // ĀD, CD // BC

25. 다음 그림의 평행사변형 ABCD 에서 \overline{BE} 는 $\angle ABC$ 의 이등분선이 다. $\overline{BC}=12\,\mathrm{cm},\ \overline{CD}=8\,\mathrm{cm}$ 일 때, \overline{DE} 의 길이는?



 \bigcirc 2 cm

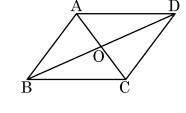
 $\bigcirc 3 \, \mathrm{cm}$

 $34 \, \mathrm{cm}$

 $45 \, \mathrm{cm}$

 \odot 6 cm

26. 다음 그림과 같은 평행사변형 ABCD 에 대하여 다음 중 옳지 <u>않은</u> 것을 골라라.



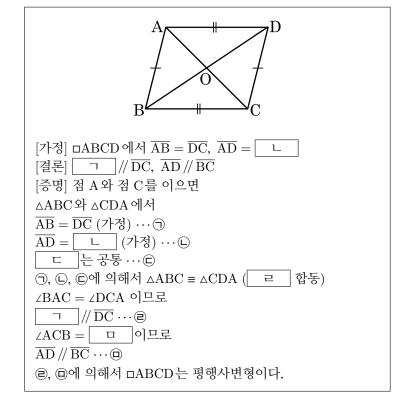
 \bigcirc $\overline{AB} = \overline{DC}$

 \bigcirc $\angle ABC + \angle BCD = 180^{\circ}$

- O 455
- \bigcirc $\angle BAC = \angle ACD$

▶ 답: _____

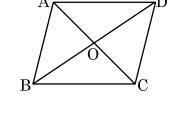
27. 다음은 '두 쌍의 대변의 길이가 각각 같은 사각형은 평행사변형이다.' 를 증명하는 과정이다. ㄱ ~ ㅁ에 들어갈 것으로 옳지 <u>않은</u> 것은?



④ = : SAS ⑤ □ : ∠CAD

① $\neg : \overline{AB}$ ② $\vdash : \overline{BC}$ ③ $\vdash : \overline{AC}$

28. 다음 중 □ABCD 가 평행사변형이 되지 <u>않는</u> 것은?



- \bigcirc $\overline{AO} = \overline{CO}, \ \overline{BO} = \overline{DO}$
- $\overline{\text{AB}}/\overline{\text{DC}}, \ \overline{\text{AB}} = \overline{\text{DC}} = 5\text{cm}$

① $\triangle AOD \equiv \triangle COB$

- $\triangle A = 130^{\circ}, \angle B = 50^{\circ}, \angle C = 130^{\circ}$
- \bigcirc $\angle OAD = \angle OCB$, $\angle ODA = \angle OBC$

- 29. 다음 그림과 같은 평행사변형 ABCD 의 대 각선 BD 위에 BE = DF 가 되도록 두 점 E, F 를 잡을 때, □AECF 는 어떤 사각형인 가?
 - F 가 되도록 두 점 F 는 어떤 사각형인 B C
 - ④ 정사각형 ⑤ 사다리꼴
 - ① 평행사변형 ② 마름모
- ③ 직사각형

30. 다음 그림과 같이 평행사변형 ABCD의 내부에 한 점 P를 잡을 때, □ABCD의 넓이는 60cm²이고, △ABP의 넓이는 △CDP의 넓이의 2배일 때, △CDP의 넓이를 구하면 ?

B

 $4 20 \text{cm}^2$

 \bigcirc 5cm²

- ② 10cm^2 ③ 25cm^2
- $3 15 \text{cm}^2$

 $\overline{\mathrm{AD}} \, / \! / \, \overline{\mathrm{BC}}$, $\overline{\mathrm{AB}} \, / \! / \, \overline{\mathrm{CD}}$ 를 만족할 때, 직사각 형이 되는 조건을 모두 고르면?

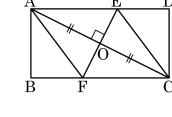
31. 다음 그림과 같은 사각형 ABCD 가

- ② ∠A = ∠D 이다.

① ∠A = ∠C 이다.

- ③ \overline{AC} 와 \overline{BD} 가 만나는 점을 O 라고 할 때, $\overline{AO} \bot \overline{DO}$ 이다. ④ $\overline{\mathrm{AD}}$ 의 중점을 M 이라고 할 때, $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$ 이다.
- ⑤ $\overline{AB} = \overline{CD}$ 이코, $\overline{AB} /\!/ \overline{CD}$ 이다.

32. 다음 그림과 같이 직사각형 ABCD 의 대각선 \overline{AC} 의 수직이등분선 이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 E,F 라 하자. $\overline{AB}=4\mathrm{cm}$, $\overline{BF}=3\mathrm{cm}$, $\overline{AF}=5\mathrm{cm}$ 일 때, ΔAFC 의 넓이를 구하여라.



) 답: _____ cm²

33. 다음 그림에서 $\Box ABCD$ 는 정사각형이고, $\angle EAD=70^\circ$, $\overline{AD}=\overline{ED}$ 일 때, $\angle x$ 의 크기는?

A 70° x

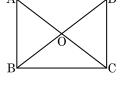
③ 20°

④ 25°

⑤ 30°

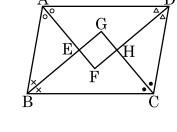
① 10° ② 15°

- **34.** 다음 그림과 같은 직사각형 ABCD 가 정사각 형이 되기 위한 조건은?



- $3 \angle AOB = 90^{\circ}$
- ② $\angle A = 90^{\circ}$
- \bigcirc \angle CDA = \angle ACB

35. 다음 그림과 같이 평행사변형 ABCD에서 네 내각의 이등분선을 연결하여 □EFGH를 만들었을 때, □EFHG는 어떤 사각형인가?



④ 정사각형

① 평행사변형

⑤ 마름모

② 사다리꼴

- ③ 직사각형

36. 다음 중 사각형에 대한 설명 중 옳지 <u>않은</u> 것은?

- 두 대각선의 길이가 같은 평행사변형은 직사각형이다.
 이웃하는 두 각의 크기가 같은 평행사변형은 정사각형이다.
- ③ 이웃하는 두 변의 길이가 같은 평행사변형은 마름모이다.
- ④ 두 대각선이 서로 다른 것을 수직 이등분하는 직사각형은 저사가형이다
- 정사각형이다. ③ 한 내각이 직각인 평행사변형은 직사각형이다.

37. 다음 보기의 사각형 중에서 두 대각선이 서로 다른 것을 수직이등분 하는 것을 모두 고르면?

보기

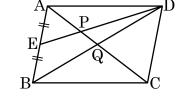
⑤ 등변사다리꼴	ⓒ 평행사변형
© 직사각형	◉ 마름모
⑤ 정사각형	④ 사다리꼴

 $\textcircled{4} \ \textcircled{7}, \textcircled{E}, \textcircled{B} \qquad \qquad \textcircled{5} \ \textcircled{E}, \textcircled{B}, \textcircled{D}, \textcircled{B}$

- **38.** 직사각형의 중점을 연결했을 때 나타나는 사각형의 성질을 나타낸 것이다. 다음 중 옳지 <u>않은</u> 것은?
 - 네 변의 길이가 모두 같다.
 두 대각선이 서로 수직으로 만난다.

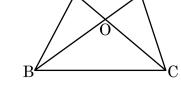
 - ③ 두 쌍의 대변이 각각 평행하다.④ 네 각의 크기가 모두 직각이다.
 - ⑤ 두 대각선이 내각을 이등분한다.

39. 다음 그림의 평행사변형 ABCD에서 점 E는 변 AB의 중점이고, $\overline{\rm DP}$: $\overline{\rm PE}=2$: 1이다. 평행사변형 ABCD의 넓이가 600일 때, $\Delta {\rm DPQ}$ 의 넓이를 구하여라.



답: ____

40. 다음 사다리꼴 ABCD 에서 $\overline{\rm AD}//\overline{\rm BC}$, $\overline{\rm AO}$: $\overline{\rm OC}=1:2$ 이고 $\Delta {\rm DOC}=12{\rm cm}^2$ 이다. 사다리꼴 ABCD 의 넓이는?

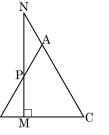


 $463 \, \text{cm}^2$

 \bigcirc 32cm²

- ② 48cm^2 ③ 72cm^2
- $3 54 \text{cm}^2$

41. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 $\triangle ABC$ 에서 변 AB 위에 점 P 를 잡아 P 를 지나면서 \overline{BC} 에 수직인 직선이 변 BC , 변 CA 의 연장선과 만 나는 점을 각각 M,N 이라 할 때, 다음 중 옳지 않은 것을 모두 고르면? (정답 2개)



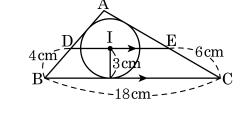
 \bigcirc $\angle BAC = 2\angle ANP$

- ② $\overline{AP} = \overline{AN}$ ④ $\angle ANP = \angle APN = \angle BPM$

42. 다음 그림에서 점 O 는 \triangle ABD 와 \triangle BDC 의 외심이다. \angle OBD = 10° 일 때, $\angle x$ 의 크기를 구하여라.

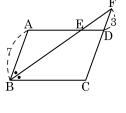
▶ 답: _ 。

43. 내접원의 반지름이 3cm 인 △ABC 의 내심 I 를 지나고 변 BC 에 평행한 직선이 변 AB, AC 와 만나는 점을 각각 D, E 라 할 때, □DBCE의 넓이를 구하여라.



> 답: _____ cm²

44. 다음 그림과 같은 평행사변형 ABCD에서 $\angle B$ 의 이등분선이 \overline{AD} 와 만나는 점을 E, \overline{CD} 의 연장선과 만나는 점을 F 라고 한다. $\overline{AB}=7$, $\overline{FD}=3$ 일 때, \overline{BC} 의 길이를 구하여라.

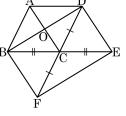


답: _____

- - B C

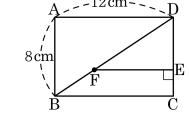
▶ 답: _____

46. 다음 그림과 같이 평행사변형 ABCD 에서 BC = Œ, DC = Œ 가 되도록 BC, DC 의 연장선 위에 각각 점 E, F 를 잡았다. △ADC 의 넓이가 7 cm² 일 때, □BFED 의 넓이를 구하여라.



> 답: _____ cm²

47. 오른쪽 그림의 직사각형 ABCD 에서 $\overline{AD}=12\mathrm{cm},\ \overline{AB}=8\mathrm{cm}$ 이고 점 F 는 대각선 BD 를 삼등분하는 한 점이다. F 에서 \overline{DC} 에 그은 수선의 발을 E 라 할 때, \overline{FE} 의 길이는?



- ① 8cm

② 7cm ③ 6cm

④ 5cm

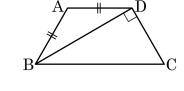
⑤ 4cm

48. 다음 그림과 같이 ∠ABC = 60° 인 마름모 ABCD 의 내부에 임의의 한 점 O 가 있다. 점 O 에서 마름모 ABCD 의 각 변 또는 그의 연 B 60° 장선 위에 내린 수선의 발을 각각 P, Q, R, S 라 할 때, 다음 중 $\overline{\mathrm{OP}} + \overline{\mathrm{OQ}} + \overline{\mathrm{OR}} + \overline{\mathrm{OS}}$ 와 같은 것은?

 \odot $2\overline{\mathrm{AB}}$

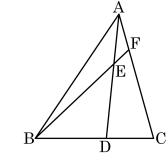
 $\textcircled{4} \ \overline{OB} + \overline{OD}$

 \bigcirc \overline{AC} \bigcirc \overline{BD} **49.** 다음 그림과 같은 등변사다리꼴 ABCD에서 $\overline{AB}=\overline{AD}$, $\angle BDC=90^\circ$ 일 때, $\angle C$ 의 크기를 구하여라.



> 답: _____ °

50. 다음과 같이 넓이가 36 인 삼각형 ABC 에서 $\overline{BD} = 2\overline{DC}$, $\overline{ED} = 3\overline{AE}$ 이고, 선분 BE 의 연장선과 변 AC 의 교점을 F 라 할 때, $\overline{BE} = 5\overline{EF}$ 일 때, △ABE + □CDEF 의 값을 구하여라.



▶ 답: