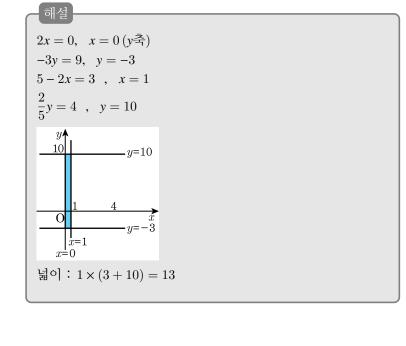
1. 다음 방정식들의 그래프로 둘러싸인 부분의 넓이를 구하여라.

 $2x = 0 -3y = 9 5 - 2x = 3 \frac{2}{5}y - 4 = 0$ 

▶ 답:

▷ 정답: 13



2. 다음 네 방정식의 그래프로 둘러싸인 도형의 넓이를 구하여라.

y = 0, y - 1 = 0, 2x + 2 = 0, x - 1 = 0

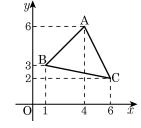
▶ 답:

▷ 정답: 2

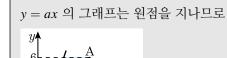
해설 네 방정식  $y=0,\ y-1=0,\ 2x+2=0,\ x-1=0$  의 그래프는

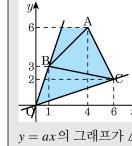
가로의 길이가 2 , 세로의 길이가 1 인 직사각형이므로 직사각형의 넓이는 2 × 1 = 2 이다.

다음 그림에서 일차함수 y = ax의 직선이 3.  $\triangle ABC$ 와 교차할 때, a의 값의 범위는?



- ①  $\frac{1}{2} \le a \le 2$  ②  $\frac{1}{3} \le a \le \frac{3}{2}$  ③  $\frac{3}{2} \le a \le 3$  ③  $\frac{1}{3} \le a \le 2$

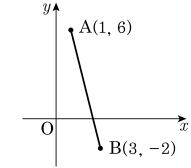




y = ax의 그래프가  $\triangle ABC$ 와 교차하기 위해서는 색칠한 부분을 지나야 한다.(경계선 포함) 점 $(6,\ 2)$ 를 대입하면  $a=\frac{1}{3}$ 이고 , 점 $(1,\ 3)$ 을 대입하면 a=3이다.

 $\therefore \frac{1}{3} \le a \le 3$ 

4. 일차함수  $y=ax+\frac{2}{3}$  의 그래프가 다음 그래프의  $\overline{AB}$  와 만날 때, a 의 값의 범위를 구하여라.



y = -3x + 6 의 x 축과의 교점을 각각 A, B 라 하고 두 직선의 교점을  $\mathbb C$  라고 하자. 점  $\mathrm{C}$  를 지나고  $\Delta\mathrm{ABC}$  의 넓이를 이등분하는 직선 CD 의 y 절편은?

5. 다음 그림과 같이 두 직선 y = x + 3 과

- ① -2
- **4** 1

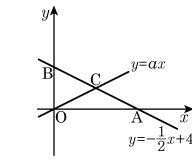


 $A(-3, 0), B(2, 0), C\left(\frac{3}{4}, \frac{15}{4}\right)$  이고

 $\triangle ACD = \triangle BCD$  일 때 D 는 A, B 의 중점이므로 D  $\left(-\frac{1}{2}, 0\right)$ 

C, D 를 지나는 직선의 방정식은  $y = 3x + \frac{3}{2}$  $\therefore (y절편) = \frac{3}{2}$ 

**6.** 직선  $y = -\frac{1}{2}x + 4$  가 x 축, y 축과 만나는 점을 각각 A, B 라고 할 때, 아래 그림을 보고 직선 y=ax 가  $\Delta BOA$ 의 넓이를 이등분하도록 하는 상수 *a* 의 값은?

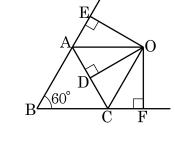


- ① 1 ②  $\frac{1}{2}$  ③  $\frac{1}{3}$  ④  $-\frac{1}{3}$  ⑤  $-\frac{1}{2}$

## $y = -\frac{1}{2}x + 4$ 의 x 절편 : 8, y 절편 : 4

- $\triangle BOA = \frac{1}{2} \times 4 \times 8 = 16$  이때, C(x, ax) 이므로
- $\triangle COA = 8 \times ax \times \frac{1}{2} = 8 \implies ax = 2$
- $\therefore C = (x, 2)$  $2 = -\frac{1}{2}x + 4 \qquad \therefore x = 4$  4a = 2  $\therefore a = \frac{2}{4} = \frac{1}{2}$

7. 다음 그림의  $\triangle ABC$  에서  $\angle A$  의 외각의 이등분선과  $\angle C$  의 외각의 이등분선의 교점을 O 라고 하고 점 O 에서 $\overline{BA}, \ \overline{BC}$  의 연장선에 내린 수선의 발을 각각 E, F 라고 한다. $\overline{OE}=5$ cm 일 때, $\overline{OF}$  의 길이를 구하여라.



 $\underline{\mathrm{cm}}$ 

▷ 정답: 5<u>cm</u>

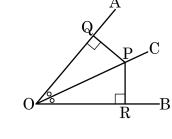
▶ 답:

해설

 $\therefore \overline{OE} = \overline{OD} = \overline{OF} = 5\,\mathrm{cm}$ 

 $\triangle AOE \equiv \triangle AOD, \triangle COD \equiv \triangle COF(RHA합동)$ 

8. 다음 그림에서  $\angle AOB$  의 이등분선  $\overline{OC}$  위의 점 P 로부터 변 OA , OB에 내린 수선의 발을 각각 Q, R 라 할 때, 다음 중 옳지 <u>않은</u> 것은?



①  $\angle POQ = \angle POR$ 

 $\bigcirc \overline{OQ} = \overline{OR} = \overline{OP}$ 

②  $\angle OQP = \angle ORP$ 

점 Q 와 점 R 은 수선의 발을 내린 것이므로

해설

 $\angle OQP = \angle ORP = 90^{\circ} (2)$  $\Delta$ POQ 와  $\Delta$ POR 에서

i )<del>OP</del> 는 공통

ii )∠PQO = ∠PRO = 90° (∵가정)

iii) $\angle$ QOP =  $\angle$ ROP (∵가정) 직각삼각형에서 빗변의 길이가 같고 한 내각의 크기가 같으므로

 $\triangle POQ \equiv \triangle POR(RHA합동)$  이다. (③)

합동인 삼각형의 두 대변의 길이는 같으므로 ④는 참이다. 또, 합동인 삼각형의 두 대각의 크기는 같으므로 ①은 참이다.