평행사변형 ABCD에서 \angle ACD = 70° , 1. ∠ABD = 30° 일 때, ∠x 의 크기는?

① 30° ④ 80°

③ 70° ② 50° ⑤100°

 $\overline{AB} /\!/ \overline{CD}$ 이므로 $\angle BAC$ = $\angle ACD$ = 70° 이코, $\angle ABD$ = ∠CDB = 30° 이다. 따라서 $\angle x = \angle ACD + \angle CDB$

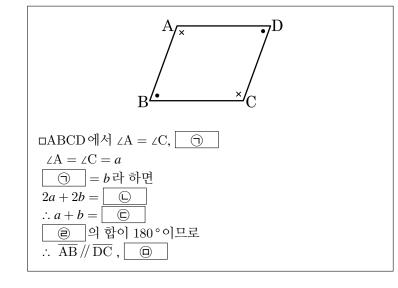
=70 $^{\circ} + 30$ $^{\circ}$ $=100\,^{\circ}$

- 2. 다음은 (가) 사각형의 각 변의 중점을 차례로 연결했을 때 생기는 사 각형이 (나)이다. 다음 중 옳지 <u>않은</u> 것은?
 - ① 가: 등변사다리꼴 → 나: 직사각형② 가: 펴해사벼형 → 나: 펴해사벼형
 - ② 가: 평행사변형 → 나: 평행사변형
 - ③ 가 : 직사각형 → 나 : 마름모
 - ④ 가: 정사각형 → 나: 정사각형⑤ 가: 마름모 → 나: 직사각형

① 등변사다리꼴의 중점 연결 → 마름모

해설

3. 다음은 '두 쌍의 대각의 크기가 각각 같은 사각형은 평행사변형이다.' 를 설명하는 과정이다. \bigcirc ~ \bigcirc 에 들어갈 것으로 옳지 <u>않은</u> 것은?



④@: 엇각 ⑤ @: AD//BC

① ① : $\angle B = \angle D$ ② ② : 360° ③ © : 180°

동측내각의 합이 180°이다.

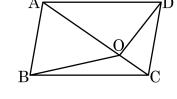
넓이가 32 인 평행사변형 ABCD 에서 \overline{AD} 와 \overline{BC} 의 중점을 각각 $M,\ N$ 이라 할 때, ΔANM 의 넓이를 구하여라. 4.



▶ 답: ▷ 정답: 8

 $\Box ABNM = \frac{1}{2}\Box ABCD \ \circ | \, \boxdot$ $\triangle ANM = \frac{1}{2} \square ABNM$ 이므로 $\triangle ABE = \frac{1}{4} \square ABCD = \frac{1}{4} \times 32 = 8 \text{ 이다.}$

다음 그림과 같은 평행사변형 ABCD 의 대각선 $\operatorname{\overline{AC}}$ 위의 점 O 에 대하 **5**. 여 $\triangle OAD = 8cm^2$, $\triangle OCD = 3cm^2$ 일 때, $\triangle OAB$ 의 넓이를 구하면?



② 5cm^2 ③ 6cm^2 $4 \text{ } 7\text{cm}^2$ \bigcirc 4cm²

 38cm^2

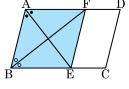
평행사변형의 대각선은 평행사변형의 넓이를 이등분하므로

해설

 $\triangle ABC = \triangle ACD = \triangle AOD + \triangle OCD = 11(cm^2)$ 이다. $\triangle OAB = x$ 라고 하면 $\triangle OBC = 11 - x$ 또, $\triangle OAD : \triangle OCD = \overline{OA} : \overline{OC} = \triangle OAB : \triangle OBC 에서$

8:3=x:(11-x), 3x=8(11-x) $\therefore x = 8(\text{cm}^2)$

6. 다음 그림의 □ABCD 는 평행사변형이다. $\angle A$, $\angle B$ 의 이등분선이 \overline{BC} , \overline{AD} 와 만나는 점을 각각 E, F 라 할 때, 색칠한 사각형은 어떤 사각형인지 말하여라.



▶ 답: ▷ 정답: 마름모

 $\label{eq:energy} \angle A + \angle B = 180\,^\circ \Leftrightarrow \frac{\angle A}{2} + \frac{\angle B}{2} = 90\,^\circ$ \overline{AE} 와 \overline{BF} 의 교점을 O 라 하면 $\angle AOB = 90\,^\circ$

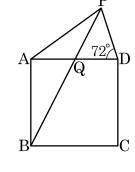
 $\angle BAE = \angle FEA$ (엇각), $\angle FAE = \angle AEB$ (엇각) $\to \angle A = \angle E$

 $\angle ABF = \angle BFE$ (엇각), $\angle EBF = \angle AFB$ (엇각)

 $\to \angle B = \angle F$

따라서 □ABEF 는 평행사변형이고 대각선은 서로 직교하므로 마름모이다.

7. 다음 그림에서 $\Box ABCD$ 는 정사각형이다. $\overline{AD}=\overline{AP}$ 이고 $\angle ADP=72$ °일 때, $\angle AQB$ 의 크기를 구하여라.



➢ 정답: 63_°

해설

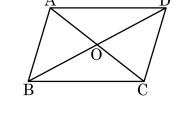
▶ 답:

 $\angle APD = \angle ADP = 72^{\circ}$ $\angle PAD = 180^{\circ} - 72^{\circ} \times 2 = 36^{\circ}$

 $\angle PAB = 36^{\circ} + 90^{\circ} = 126^{\circ}$ $\angle APQ = (180^{\circ} - 126^{\circ}) \div 2 = 27^{\circ}$ $\angle AOB = 27^{\circ} + 36^{\circ} - 63^{\circ}$

 $\angle AQB = 27^{\circ} + 36^{\circ} = 63^{\circ}$

8. 다음 그림과 같은 평행사변형 ABCD에 조건을 주었을 때, 어떤 사각 형이 되는지를 바르게 연결한 것은?



- ② ∠OAD = ∠OAB → 직사각형
- ③ ∠OBC = ∠OCB = 45° → 정사각형

① $\angle OAD = \angle ODA \rightarrow 마를모$

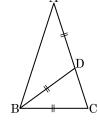
- ④ OC = OD → 정사각형
- ⑤ △OBC ≡ △OCD → 정사각형

① $\angle OAD = \angle ODA$ 이면 $\overline{OA} = \overline{OD} \rightarrow$ 직사각형

해설

- ②∠OAD = ∠OAB이면 $\overline{AB} = \overline{AD} \rightarrow$ 마름모 ③ ∠OBC = ∠OCB = 45°이면 $\overline{OB} = \overline{OC}$,
- ∠BOC = 90° → 정사각형
- ④ $\overline{\mathrm{OC}} = \overline{\mathrm{OD}} \rightarrow$ 직사각형 ⑤ $\Delta\mathrm{OBC} \equiv \Delta\mathrm{OCD}$ 이면
- $\angle COB = \angle COD = 90^{\circ},$
- $\overline{\mathrm{CD}} = \overline{\mathrm{CB}} \to$ 마름모

9. 다음 그림에서 $\overline{AB} = \overline{AC}$, $\overline{AD} = \overline{BD} = \overline{BC}$ 일 때, $\angle A$ 의 크기를 구하여라.



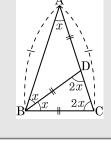
➢ 정답: 36°

▶ 답:

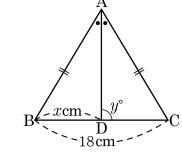
 $\angle A$ 의 크기를 $\angle x$ 라고 하면

해설

 $2\angle x + \angle x + \angle x + \angle x = 180^{\circ}, 5\angle x = 180^{\circ}$ $\therefore \angle x = 36^{\circ}$



10. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등 분선과 \overline{BC} 의 교점을 D라 하자. $\overline{BC}=18\mathrm{cm}$ 일 때, x+y의 값은?



① 77 ② 88

399

4 110

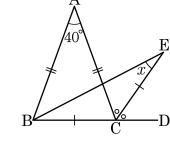
⑤ 122

____ 이등변삼각형에서 꼭지각의 이등분선은 밑변을 수직이등분하

卫로 $x = \frac{1}{2} \times 18 = 9 \text{ (cm)}, \ \angle y = 90^{\circ}$

$$\therefore x + y = 9 + 90 = 99$$

 ${f 11.}$ 다음 그림과 같이 ${f \overline{AB}}={f \overline{AC}}$, ${f \overline{CB}}={f \overline{CE}}$ 인 이등변삼각형이고 $\angle A = 40^{\circ}$, $\angle ACE = \angle DCE$ 일 때, $\angle x$ 의 값은?



① 22.5° ② 25°

③27.5°

④ 30° ⑤ 32.5°

△ABC 가 이등변삼각형이므로

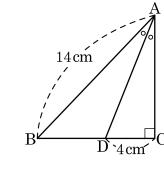
 $\angle ABC = \angle ACB = \frac{1}{2}(180^{\circ} - 40^{\circ}) = 70^{\circ}$

또한 $\angle ACE = \angle DCE = \frac{1}{2}(180^{\circ} - 70^{\circ}) = 55^{\circ}$

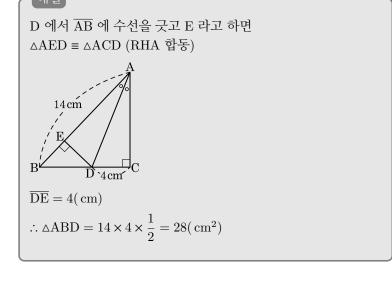
 $_{\Delta BCE}$ 가 $\overline{\mathrm{CB}} = \overline{\mathrm{CE}}$ 인 이등변삼각형이고 $_{ZBCE} = 70^{\circ} + 55^{\circ} =$ 125°

 $\therefore \angle x = \frac{1}{2} (180^{\circ} - \angle BCE)$ $= \frac{1}{2} (180^{\circ} - 125^{\circ})$ $= 27.5^{\circ}$

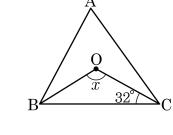
12. 다음 그림과 같이 $\angle C=90^\circ$ 인 직각삼각형 ABC 에서 $\angle A$ 의 이등분 선이 \overline{BC} 와 만나는 점을 D 라고 한다. $\overline{AB}=14\mathrm{cm}$, $\overline{DC}=4\mathrm{cm}$ 일 때, $\triangle ABD$ 의 넓이를 구하면?



- ① 20cm^2 ④ 26cm^2
- ② 22cm^2 ③ 28cm^2
- $3 24 \text{cm}^2$
- ÷ 200.



13. 다음 그림에서 $\triangle ABC$ 의 세 변의 수직이등분선이 한 번에서 만나는 점이 점 O 일 때, $\angle x$ 의 크기를 구하여라.



▷ 정답: 116°

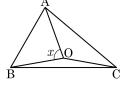
▶ 답:

$\overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이므로 $\Delta\mathrm{OBC}$ 는 이등변삼각형이다.

해설

따라서 이등변삼각형의 밑각인 ∠OBC = ∠OCB 이므로 ∠x = 180° – $2 \times 32^{\circ}$ = 116° 이다.

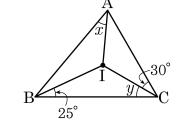
14. 다음 그림에서 점 $O \leftarrow \triangle ABC$ 의 외심이고, $\angle A: \angle B: \angle C=4:3:2$ 일 때, $\angle x$ 의 크기를 구하여라.



▶ 답: ▷ 정답: 80°

 $\angle C = 180^{\circ} \times \frac{2}{4+3+2} = 40^{\circ}$ 점 O가 ΔABC의 외심이므로 $\angle x = 2 \angle ACB = 2 \times 40^{\circ} = 80^{\circ}$

15. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때, $\angle x + \angle y$ 의 값을 구하여라.



➢ 정답: 65°

▶ 답:

점 I가 ΔABC의 내심이므로

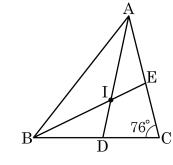
해설

 $\angle IAB + \angle IBC + \angle ICA = 90^{\circ}$ $\angle x + 25^{\circ} + 30^{\circ} = 90^{\circ}$ $\angle x = 35^{\circ}$ $\angle ICA = \angle ICB = 30^{\circ}$ 이므로

 $\angle y = 30^{\circ}$

 $\therefore \ \angle x + \angle y = 35^{\circ} + 30^{\circ} = 65^{\circ}$

16. $\triangle ABC$ 에서 점 I 는 내심이다. 다음 그림과 같이 $\angle C=76^\circ$ 일 때, $\angle ADB+\angle BEA$ 를 구하면?

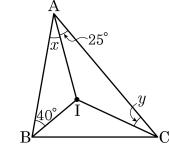


① 190° ② 195° ③ 201°

4 204°

⑤ 205°

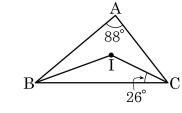
 $∠A + ∠B = 180^{\circ} - 76^{\circ} = 104^{\circ}$ ∴ ∠ADB + ∠AEB $= \frac{1}{2}∠A + 76^{\circ} + \frac{1}{2}∠B + 76^{\circ}$ $= 52^{\circ} + 152^{\circ} = 204^{\circ}$ 17. 다음 그림에서 점 I 가 삼각형의 내심일 때, $\angle x$, $\angle y$ 의 크기를 구하여라.



> 정답: ∠y = 25 _ °

답:

 $\angle x = \angle IAC = 25^{\circ}$ $\angle y = 90^{\circ} - (25^{\circ} + 40^{\circ}) = 25^{\circ}$ 18. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. $\angle A=88$ °일 때, $\angle BIC$ 의 크기는?



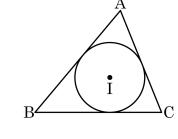
① 44° ② 67° ③ 84°

④134°

⑤ 176°

점 I가 \triangle ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A이다. \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A = $90^{\circ} + \frac{1}{2} \times 88^{\circ} = 134^{\circ}$

19. 다음 그림에서 점 I 는 삼각형 ABC 의 내심이다. 삼각형의 둘레의 길이가 30cm 이고, 넓이가 60cm² 일 때, 내접원의 넓이를 구하여라.

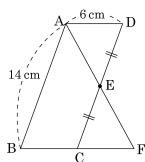


 $\underline{\mathrm{cm}^2}$ ▶ 답: ightharpoonup 정답: $16\pi \ \mathrm{cm}^2$

삼각형의 둘레가 $30\mathrm{cm}$ 이고, 넓이가 $60\mathrm{cm}^2$ 이므로 $\frac{1}{2} \times 30 \times$ (반지름의 길이) = 60 반지름의 길이는 4cm 이다.

따라서 내접원의 넓이는 $\pi \times 4^2 = 16\pi (\mathrm{cm}^2)$

20. 다음 그림과 같은 평행사변형 ABCD에 서 $\overline{\mathrm{CD}}$ 의 중점을 E 라 하고, $\overline{\mathrm{AE}}$ 의 연장 선이 $\overline{\mathrm{BC}}$ 의 연장선과 만나는 점을 F 라 하자. 이 때, $\overline{\mathrm{BF}}$ 의 길이를 구하여라.



▷ 정답: 12cm

 $\underline{\mathrm{cm}}$

▶ 답:

△ADE와 △FCE에서 $\overline{\mathrm{ED}} = \overline{\mathrm{EC}}$ $\angle ADE = \angle FCE()$ 각

∠AED = ∠FEC(맞꼭지각)

 $\therefore \triangle ADE \equiv \triangle FCE (ASA 합동)$ 따라서 $\overline{AD} = \overline{FC} = 6\,\mathrm{cm}$

평행사변형이므로 $\overline{\mathrm{BC}}=\overline{\mathrm{AD}}=6\,\mathrm{cm}$

 $\therefore \overline{BF} = \overline{BC} + \overline{FC} = 6 + 6 = 12 (cm)$

21. 다음 그림의 평행사변형 ABCD 에서 ∠B 의 이등분선과 CD 의 연장선과의 교점을 E 라하고, AB = 8cm, DE = 3cm 일 때, BC 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

8 cm D S cm

▷ 정답: 11<u>cm</u>

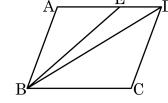
─<mark>해설</mark> □ABCD 가 평행사변형이므로

▶ 답:

 $\overline{AB} = \overline{CD} = 8(cm)$ $\angle ABE = \angle BEC$ 이므로

 $\overline{BC} = \overline{CE} = 8 + 3 = 11(cm)$

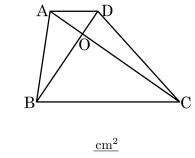
- 22. 다음 그림과 같은 평행사변형 ABCD의 넓이가 $50 \mathrm{cm}^2$ 이고, $\overline{\mathrm{AE}}:\overline{\mathrm{ED}}=3:2$ 일 때, $\Delta\mathrm{ABE}$ 의 넓이는?



- 4 20cm^2
- $2 12 \text{cm}^2$ \bigcirc 25cm²
- 315cm^2

 $\triangle ABE + \triangle EBD = \frac{1}{2} \square ABCD$ $\therefore \triangle ABE = \frac{1}{2} \square ABCD \times \frac{3}{3+2} = 15 (cm^2)$

23. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 \overline{AO} : $\overline{CO}=1:3$ 이고 $\triangle AOB=6 {
m cm}^2$ 일 때, $\triangle OBC$ 의 넓이를 구하여라.



 ▷ 정답:
 18 cm²

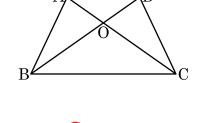
▶ 답:

ΔABO , ΔOBC 는 높이가 같고 밑변이 다르다.

해설

 $\triangle ABO : \triangle OBC = 1 : 3 = 6 \text{cm}^2 : \triangle OBC : \triangle OBC = 18 \text{cm}^2$

24. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 $\overline{OA}:\overline{OC}=1:2$ 이다. $\triangle AOD$ 의 넓이가 18 일 때, $\Box ABCD$ 의 넓이는?



해설

① 148 ② 150

③162

4 175

⑤ 180

 $\triangle AOD : \triangle COD = 1 : 2$ 이므로

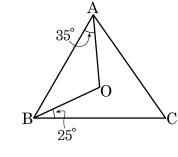
18: △COD = 1: 2 ∴ △COD = 36 이때 △ABD = △ACD 이므로 △ABO = △COD = 36

 $\triangle ABO = \triangle COD = 36$

또, AABO : ACOB = 1 : 2 이므로

 $36 : \triangle COB = 1 : 2$ ∴ $\triangle COB = 72$ ∴ $\Box ABCD = 18 + 36 + 36 + 72 = 162$

25. 다음 그림의 \triangle ABC에서 점 O는 외심이다. \angle OAB = 35° , \angle OBC = 25°일 때, ∠C의 크기는?



① 40° ② 45° ③ 50°

⑤ 60°

 $\angle C = \angle x$ 라 할 때, $\triangle OBC$ 가 이등변삼각형이므로 $\angle OBC =$

해설

 $\angle {\rm OCB}$ 따라서 $\angle x = 25$ ° + \angle OCA, $\angle OAC + 35^{\circ} + 25^{\circ} = 90^{\circ}$

 $\angle \mathrm{OAC} = \angle \mathrm{OCA} = 30\,^{\circ}$

 \therefore $\angle x = 55^{\circ}$