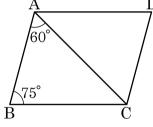
$60^\circ$ ,  $\angle ABC = 75^\circ$ ,  $\overline{BC} = 6 \, \mathrm{cm}$  일 때,  $\angle CAD$ ,  $\overline{AD}$  는?  $A \qquad \qquad D$ 

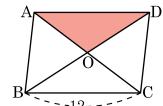
□ABCD 는 평행사변형이다. 다음 그림과 같이 ∠CAB =



① 35°, 6 cm ② 40°, 7 cm ③ 45°, 6 cm

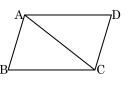
 $455^{\circ}$ , 6 cm  $55^{\circ}$ , 7 cm

다음 평행사변형 ABCD에서  $\overline{BC} = 12$ 이고 두 대각선의 합이 36일 때. 어두운 부분의 둘레의 길이는?



 $\overline{AD} = \overline{BC}$  이면  $\square ABCD$  는 평행사변형임을 증명하는 과정이다. 빈 칸에 들어갈 것 중

3.



옳지 않은 것은? 대각선 AC 를 그어보면 대각선 AC 는 삼각형 ADC 와 삼각형

다음 그림과 같은  $\square ABCD$  에서  $\overline{AB} = \overline{DC}$ .

CBA 의 공통부분이 된다. AB = ( ① ) 이고, AD = ( ② ) 이므로

 $\angle BAC = \angle DCA, \angle DAC = \angle BCA(4)$ 따라서 두 쌍의 대변이 각각 (⑤) 하므로 □ABCD 는 평행사 변형이다.

 $\bigcirc$  CD

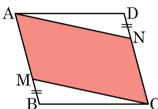
② CB

③ SSS

 $\overline{AB} = \overline{DC}, \overline{AD} = \overline{BC}$ 

⑤ 평행

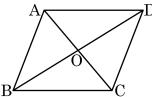
다음 평행사변형 ABCD 에서 색칠한 부분이 나타내는 도형은 무엇인 가?



① 사다리꼴 ② 평행사변형 ③ 직사각형

마름모 ⑤ 정사각형

5. 다음 평행사변형 ABCD 에서 △OBC 의 넓이가 30 cm² 일 때, □ABCD 의 넓이는?



①  $90 \,\mathrm{cm}^2$  ②  $100 \,\mathrm{cm}^2$ 

 $cm^2$  3 110 cm<sup>2</sup>

 $4 120 \, \text{cm}^2$   $5 130 \, \text{cm}^2$ 

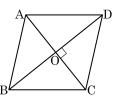
6. 다음은 평행사변형이 직사각형이 되는 것에 대한 이야기이다. 바르게 말한 학생은?

① 관식: 평행사변형에서 각 대각선이 서로 다른 대각선을

- 이등분하면 직사각형이야.
- ② 관회: 평행사변형에서 두 대각선이 직교하면 직사각형이야.
  - ③ 민희: 평행사변형의 두 내각의 크기의 합은 180°일 때 직사각형이야.
- ④ 진수: 평행사변형에서 두 대각선의 길이가 같거나, 한 내각의 크기가 90° 이면 직사각형이야
- 크기가 90° 이면 직사각형이야.
  ⑤ 정민: 평행사변형의 이웃하는 두 변의 길이가 같으면

직사각형이야.

7. 다음은 '마름모의 두 대각선이 서로 수직으로 만난다.' 를 증명하는 과정이다. 안에 알맞은 것을 보기에서 찾아 써넣어라.

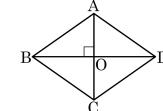


| [가정] □ABCD 에서 AB = BC = CD = DA [결론] [증명] 두 대각선 AC, BD 의 교점을 O 라 하면 △ABO 와 △ADO 에서 AB = (가정) AO 는 공통, OB = ○ 이므로 △ABO ≡ △ADO ( 합동) ∴ ∠AOB = ∠AOD 이 때, ∠AOB + ∠AOD = 180°이므로 | [결론] [증명] 두 대각선 AC, BD 의 교점을 O 라 하면 △ABO 와 △ADO 에서 ĀB = (가정) ĀO 는 공통, ŌB = 이므로 △ABO ≡ △ADO ( 합동) ∴ ∠AOB = ∠AOD |                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                             |                                                                                                                | [결론] [증명] 두 대각선 AC, BD 의 교점을 O 라 하면  △ABO 와 △ADO 에서 ĀB = (가정)  ĀO 는 공통, ŌB = 이므로  △ABO ≡ △ADO ( 합동)  ∴ ∠AOB = ∠AOD 이 때, ∠AOB + ∠AOD = 180°이므로  ∠AOB = ∠AOD = 이다. ∴ ĀC⊥BD |

|       | $\bigcirc$ $\overline{\mathrm{DA}}$ | $\bigcirc$ $\overline{\mathrm{OD}}$ | © SSS |
|-------|-------------------------------------|-------------------------------------|-------|
| © SAS | ⊕ 45°                               | ⊗ 180°                              | ⊚ 90° |

- 답: \_\_\_\_
- 답: \_\_\_\_\_
- 답: \_\_\_\_
- 답: \_\_\_\_
- ▶ 답: \_\_\_\_\_

8. 다음 그림과 같은 마름모 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면?



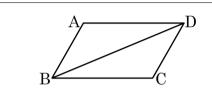
① 
$$\angle ABO = \angle CBO$$

$$\overline{\text{BO}} = \overline{\text{DO}}$$

$$\overline{\text{AB}} = \overline{\text{CD}}$$

다음 그림과 같이 평행사변형 ABCD 에서  $\angle ABD = 35^{\circ}$ ,  $\angle ACD = 55^{\circ}$  일 때,  $\angle x - \angle y$  의 값은? ① 20° ② 25° ③ 30°

**10.** 다음은 '평행사변형에서 두 쌍의 대각의 크기가 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 알맞은 것은?



 $\odot$   $\overline{CD}$ 

 $\overline{AD}$ 

 $\bigcirc$   $\overline{BD}$ 

 $\triangle ABD \triangle CDB$ 에서  $\overline{AB} = \overline{CD} \cdots \bigcirc$ ,

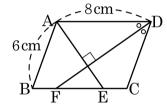
$$\overline{\mathrm{AD}} = \boxed{\phantom{AA}} \cdots \boxed{\phantom{AA}}$$

BD는 공통 · · · ©

평행사변형 ABCD에 점 B와 점 D를 이으면

- 11. 다음은 (가) 사각형의 각 변의 중점을 차례로 연결했을 때 생기는 사각형이 (나)이다. 다음 중 옳지 <u>않은</u> 것은?
  - ① 가 : 등변사다리꼴 → 나 : 직사각형② 가 : 평행사변형 → 나 : 평행사변형
  - ③ 가 : 직사각형 → 나 : 마름모
  - ③ 가 : 식사각영 → 나 : 마듬모④ 가 : 젓사각형 → 나 : 정사각형
    - ④ 가 · 성사각 영 → 나 · 성사각 영 ⑤ 가 : 마름모 → 나 : 직사각형

12. 다음 그림의  $\square ABCD$  는  $\overline{AB} = 6 \mathrm{cm}$  ,  $\overline{AD} = 8 \mathrm{cm}$  인 평행사변형이고,  $\overline{DF}$  는  $\angle D$  의 이등분선,  $\overline{AE} \bot \overline{DF}$  이다. 이 때,  $\overline{EF}$  의 길이는?



① 2cm

② 2.5cm

3cm

④ 3.5cm

cm ⑤ 4cm

 B. 다음 그림처럼 평행사변형 ABCD 에서 선
 A F

 분 AE와 선분 CF가 ∠A 와 ∠C 의 이등분선
 ②

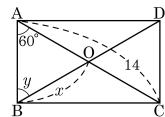
 일 때, ∠AEC 의 값을 구하여라.
 50°



A P 는 평행사변형 ABCD 의 내부의 한 점이다. 평행사변형 ABCD 의 넓이가 30이고 ΔABP 의 넓이가 10일 때, ΔPCD 의 넓이는 얼마인지 구하여라.

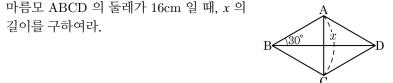


**15.** 다음 그림과 같은 직사각형 ABCD 에서 x+y 의 값을 구하여라. (단, 단위생략)



☑ 답: \_\_\_\_\_

길이를 구하여라.



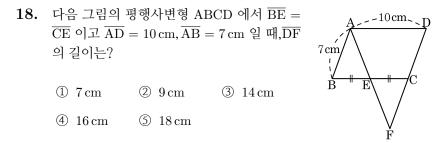
cm

5 cm , ∠C = 60° 일 때, □ABCD 의 둘레의 길이를 구하여라. A.~5 cm~.D

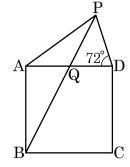


17. 다음 그림에서  $\square ABCD \vdash \overline{AB} = \overline{AD}$  인 등변사다리꼴이다.  $\overline{AD} = \overline{AD}$ 

급 ·



**19.** 다음 그림에서 □ABCD는 정사각형이다.  $\overline{AD} = \overline{AP}$ 이고 ∠ADP = 72°일 때, ∠AQB의 크기를 구하여라.





## 다음 그림과 같이 등변사다리꼴 ABCD에서 $\overline{AD}$ // $\overline{BC}$ // $\overline{EF}$ , $\overline{AH}\bot\overline{BC}$ **20**. 이다.

 $\overline{AG}$ :  $\overline{GH} = 2:1$ 이고, 사다리꼴 AEFD와 EBCF의 넓이가 같을 때. EG의 길이를 구하여라.

