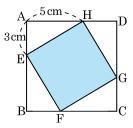
다음 그림과 같은 정사각형 ABCD 에서 1. \overline{AE} = \overline{BF} = \overline{CG} = \overline{DH} = $3\,\mathrm{cm}$, \overline{AH} = $\overline{\mathrm{BE}} = \overline{\mathrm{CF}} = \overline{\mathrm{DG}} = 5\,\mathrm{cm}$ 일 때, $\square\mathrm{EFGH}$ 의 넓이를 구하여라.

 $\underline{\rm cm^2}$



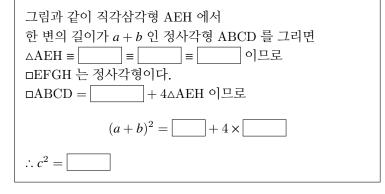
▷ 정답: 34<u>cm²</u>

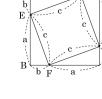
▶ 답:

 $\overline{EH} = \sqrt{3^2 + 5^2} = \sqrt{34} (\,\mathrm{cm})$

□EFGH 는 정사각형이므로 $\therefore \Box EFGH = 34(\, cm^2)$

2. 다음은 피타고라스의 정리를 설명하는 과정이다. 빈칸에 알맞은 것을 써 넣어라.





▶ 답:

ightharpoonup 정답: $\triangle \mathrm{BFE}$, $\triangle \mathrm{CGF}$, $\triangle \mathrm{DHG}$, $\Box \mathrm{EFGH}$, c^2 , $\frac{1}{2}ab$, a^2+b^2

해설 그림과 같이 직각삼각형 AEH 에서 한 변의 길이가 a+b 인 정사각형 ABCD를 그리면 $\triangle AEH \equiv \triangle BFE \equiv \triangle CGF \equiv \triangle DHG$ 이므로 □EFGH 는 정사각형이다. □ABCD =□EFGH +4△AEH 이므로 $(a+b)^2 = c^2 + 4 \times \frac{1}{2}ab$ $\therefore c^2 = a^2 + b^2$

3. 세 변의 길이가 각각 a-2, 2a-3, 7 인 삼각형이 직각삼각형이 되기 위한 a 의 값을 구하여라. (단, 7 은 가장 긴 변이 아니다.)

▶ 답:

ightharpoonup 정답: $\frac{4+2\sqrt{37}}{3}$

길이는 양수이므로 a-2>0 , 2a-3>0

 $(2a-3) - (a-2) = a-1 > 0 \ (\because \ a > 2)$ $\therefore 2a - 3 > a - 2$

(2a-3) 이 가장 긴 변이므로 (a-2)+7>2a-3

∴ 2 < *a* < 8

 $(2a-3)^2 = (a-2)^2 + 7^2$ $3a^2 - 8a - 44 = 0$

 $\therefore a = \frac{4 + 2\sqrt{37}}{3}$

- **4.** 세 변의 길이가 $4\,\mathrm{cm},\ 6\,\mathrm{cm},\ a\,\mathrm{cm}$ 인 삼각형이 둔각삼각형일 때, 자연 수 a 의 최댓값은 ? (단, a > 6 이다.)
 - ① 3 ② 4 ③ 6 ④ 9 ⑤ 10

둔각삼각형이 되려면 $4^2 + 6^2 < a^2$, $a^2 > 52$

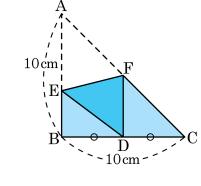
 $\therefore a > 2\sqrt{13}$

해설

또한, 변의 성질에 의하여 a < 10따라서 $2\sqrt{13} < a < 10$

a 는 자연수이므로 최댓값은 9

다음 그림과 같이 $\overline{AB}=\overline{BC}=10$ 인 직각이등변삼각형 ABC 를 \overline{EF} 를 기준으로 접어서 점 A 가 \overline{BC} 의 중점에 위치하도록 하였다. 이때 **5.** $\overline{
m DE}$ 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $\frac{25}{4}$ $\underline{\mathrm{cm}}$

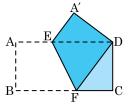
답:

 $\overline{\mathrm{DE}} = x$ 라 놓으면 $\overline{\mathrm{AE}} = \overline{\mathrm{DE}} = x$ 가 되고, $\overline{\mathrm{BE}} = 10 - x$ 가 된다.

해설

 $\overline{\mathrm{BD}} = 5\mathrm{cm}$ (: $\overline{\mathrm{BC}}$ 의 중점) 삼각형 EBD 에서 피타고라스 정리를 이용하면 $x^2 = 5^2 + (10-x)^2$, $x = \frac{25}{4}$ (cm)

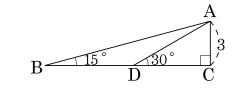
6. 다음 그림은 직사각형 ABCD 를 점 B 가 점 D 에 오도록 접은 것이다. 다음 중 옳지 <u>않은</u> 것은?



- ① $\overline{AE} = \overline{A'E} = \overline{CF}$
- ② △DEF 는 이등변삼각형이다.③ △A'ED ≡ △CFD
- $\overline{\text{4}}\overline{\text{EF}} = \overline{\text{DE}}$
- © D1 D1 D.

 $\textcircled{4} \ \overline{\mathrm{EF}} \neq \overline{\mathrm{DE}}$

7. 다음 그림을 이용하여 tan 15° 의 값을 구하면?



- ① $2 \sqrt{2}$ ② $2 \sqrt{3}$ ③ $3 \sqrt{2}$ ④ $3 \sqrt{3}$

$$\tan 30^{\circ} = \frac{3}{\overline{CD}} = \frac{\sqrt{3}}{3}$$

$$\overline{CD} = 3\sqrt{3}$$

$$\overline{\mathrm{BD}} = \overline{\mathrm{AD}}$$

$$\overline{CD} = 3\sqrt{3}$$

$$\overline{BD} = \overline{AD} = 6$$

$$\therefore \tan 15^\circ = \frac{3}{6+3\sqrt{3}} = \frac{1}{2+\sqrt{3}} = 2-\sqrt{3}$$

- 8. 다음 그림과 같이 *x* 절편이 -3 이고 *x* 축의 양의 방향과 이루는 각이 60° 인 직선을 그래 프로 하는 일차함수의 식은?
 - ① $y = x + \sqrt{2}$ ② $y = x + 2\sqrt{2}$
 - $y = x + 2 \sqrt{x}$

 - $y = \sqrt{3}x + 3\sqrt{3}$

 $\tan 60^\circ = \sqrt{3}$ 이므로 $y = \sqrt{3}x + b$ 에 (-3, 0) 을 대입하면

 $0 = -3\sqrt{3} + b$ $\therefore b = 3\sqrt{3}$ 따라서 구하는 일차함수의 식은 $y = \sqrt{3}x + 3\sqrt{3}$ 이다.

60°

О

9. $45^{\circ} \le x < 90^{\circ}$ 이고 세 변의 길이가 $\sin x$, $\cos x$, $\tan x$ 인 직각삼각 형일 때, x 의 값을 구하여라.

 ▶ 답:
 .°

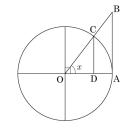
 ▷ 정답:
 45 .°

01. 10_

 $45\,^\circ \le x < 90\,^\circ$ 에서 $\tan x$ 의 값이 가장 크므로 $\tan^2 x = \sin^2 x + \cos^2 x = 1$

 $\tan x = 1 \ (\because \ \tan x > 0)$ $\therefore x = 45^{\circ}$

10. 다음 그림은 반지름이 1 인 원이다. $\cos x$ 를 나타내는 선분은?



 $\odot \overline{BD}$

① \overline{AB} ② \overline{CD} ③ \overline{OB}

তার $\cos x = \frac{\overline{OD}}{\overline{OC}} = \frac{\overline{OD}}{1} = \overline{OD}$