
1. 다음은 '평행사변형에서 두 쌍의 대각의 크기가 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 알맞은 말을 차례대로 나열하면?

4 $\overline{\text{CD}}$, $\angle{\text{D}}$

① $\overline{\mathrm{CB}}$, $\angle{\mathrm{C}}$

- \bigcirc \overline{BD} , $\angle C$ \bigcirc \bigcirc \overline{AB} , $\angle D$ \bigcirc \overline{CB} , $\angle D$

해설

 $\triangle ABD$ 와 $\triangle CDB$ 에서 $\overline{AB}=\overline{CD},$ $\overline{AD}=\overline{BC},$ \overline{BD} 는 공통이므로 $\triangle ABD \equiv \triangle CDB (SSS 합동)$

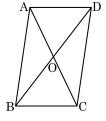
 $\therefore \ \angle \mathbf{A} = \angle \mathbf{C} \ , \ \angle \mathbf{B} = \angle \mathbf{D}$

2. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle A: \angle B=3:1$ 일 때, 사각형 ABCD 의 둘레의 길이와 ∠C 의 크기는?

① $12,120^{\circ}$ ② $12,135^{\circ}$ ③ $16,120^{\circ}$

④ 16, 135° ⑤ 18, 135°

 $x + 3 = 2x + 1 \therefore x = 2$ (평행사변형의 둘레의 길이)= 16


또한 $\angle A + \angle B = 180$ ° $\angle A = 180$ ° $\times \frac{3}{4} = 135$ ° ∠A = ∠C 이므로 ∠C = 135°이다.

- 다음 그림과 같이 평행사변형 ABCD 의 각 변의 중점을 P, Q, R, S 라고 할 때, □PQRS 는 어떤 도형이 되는가?
 ① 정사각형
 ② 마름모
 - S P R R
 - ③ 직사각형
- ④ 평행사변형
- ⑤ 사다리꼴

해설

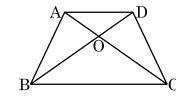
두 쌍의 대변의 길이가 각각 같으므로 평행사변형이다.

4. 다음과 같은 평행사변형 ABCD 에서 \triangle AOB 의 넓이가 8 일 때, △ABC 의 넓이는?

① 8

② 10 ③ 12

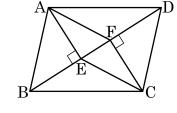
416


⑤ 알수 없다.

 ΔAOB 와 ΔOBC 의 넓이는 같으므로

해설

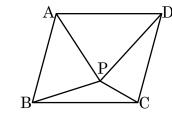
 $\triangle ABC = 2 \times \triangle AOB = 16$ 이다.


5. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\triangle ABO = 20 \mathrm{cm}^2$, $2\overline{DO} = \overline{BO}$ 일 때, $\triangle DBC$ 의 넓이는?

- ① 40cm^2
- $\bigcirc 50 \text{cm}^2$
- 360cm^2
- $4 70 \text{cm}^2$
- \bigcirc 80cm²

하설 ΔAOB = ΔCOD = 20cm² 또, 2DO = BO 이므로

 \therefore $\triangle BOC = 40 cm^2$ 따라서 $\triangle DBC = \triangle COD + \triangle BOC = 20 + 40 = 60 (cm^2)$ 6. 다음 그림과 같이 평행사변형 ABCD 의 두 꼭짓점 A, C 에서 대각선 BD 에 내린 수선의 발을 각각 E, F 라 할 때, □AECF 는 평행사변형이다. 이용되는 평행사변형이 되는 조건은?



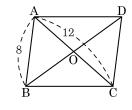
- 두 쌍의 대각의 크기가 각각 같다.
 두 대각선이 다른 것을 이등분한다.
- ③ 두 쌍의 대변이 각각 평행하다.
- ④ 한 쌍의 대변이 평행하고, 그 길이가 같다.
- ⑤ 두 쌍의 대변의 길이가 각각 같다.

$\triangle ABE \equiv \triangle CDF(RHA 합동)$ 이므로 $\overline{AE} = \overline{CF}$

 $\angle AEF = \angle CFE = 90^\circ$ (엇각)이므로 $\overline{AE}//\overline{CF}$ 따라서 한 쌍의 대변이 평행하고 그 길이가 같으므로 $\Box AECF$ 는 평행사변형이다.

다음 그림과 같이 넓이가 $40 \mathrm{cm}^2$ 인 평행사변형 ABCD 의 내부의 한 점 7. P에 대하여 ΔPAD와 ΔPBC의 넓이가 4:1일 때, ΔPAD의 넓이는?

- 216cm^2 \bigcirc 25cm²
- $3 20 \text{cm}^2$
- 4 22cm^2

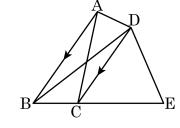

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = $\triangle PAD + \triangle PBC$ 이다. $\Box ABCD = \triangle PAB + \triangle PBC + \triangle PCD + \triangle PAD = 2 \times \big(\triangle PBC +$

 $\triangle \mathrm{PAD})$ $\triangle PBC + \triangle PAD = 40 \times \frac{1}{2} = 20 (cm^2)$ 이코,

△PAD : △PBC = 4 : 1 이므로

 $\therefore \ \Delta \mathrm{PAD} = 20 \times \frac{4}{5} = 16 (\mathrm{cm}^2)$

8. $\overline{AB} = 8$, $\overline{AC} = 12$ 인 평행사변형 ABCD 가 다음 조건을 만족할 때, 직사각형이 되도록 하는 조건을 모두 고르면? (정답 2개)


 $\overline{\text{3}}\overline{\text{BD}} = 12$

① $\overline{\text{CD}} = 8$

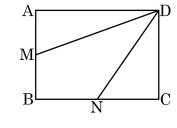
해설 한 내각이 직각이거나 두 대각선의 길이가 같은 평행사변형은

직사각형이 되므로 $\angle A=90\,^\circ,\ \overline{AC}=\overline{BD}$ 이다.

다음 그림과 같이 \overline{AB} // \overline{CD} 이코 $\Delta DCE = 30 cm^2$, $\Delta DBC = 15 cm^2$ 9. 일 때, □ACED의 넓이는?

 $40 \, \mathrm{cm}^2$

 \bigcirc 25cm²

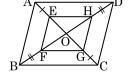

 $\odot 30 \mathrm{cm}^2$ \bigcirc 45cm^2

 35cm^2

 $\overline{\mathrm{AB}} /\!\!/ \overline{\mathrm{DC}}$ 이므로 $\Delta \mathrm{ACD}$ 와 $\Delta \mathrm{DBC}$ 는 밑변 $\overline{\mathrm{CD}}$ 가 같고 높이가

같으므로 넓이가 같다. $\Box ACED = \triangle DCE + \triangle ACD = \triangle DCE + \triangle DBC$ $\therefore \Box ACED = 30 + 15 = 45 (cm^2)$

10. 직사각형 ABCD 에서 점 M, N 은 AB, BC 의 중점이다. □ABCD = $50 \mathrm{cm}^2$ 일 때, □MBND 의 넓이를 구하면?

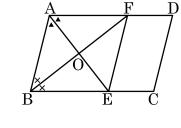

- ① 12.5cm² ④ 27.5cm²
- ② 20cm^2 ③ 30cm^2
- 325cm^2

해설

0 000

점 M, N 이 모두 \overline{AB} , \overline{BC} 의 중점이므로 $\square MBND = \frac{1}{2} \square ABCD = 25 cm^2$

다음 그림과 같은 평행사변형 ABCD 에서 AE = CG, BF = DH일 때, □EFGH는 평행 사변형이 된다. 그 조건은?



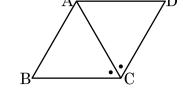
- 두 쌍의 대변이 각각 평행하다
 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선은 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변이 평행하고 그 길이가 같다.

$\overline{\mathrm{AO}} = \overline{\mathrm{CO}}, \overline{\mathrm{AE}} = \overline{\mathrm{CG}}$ 이므로 $\overline{\mathrm{EO}} = \overline{\mathrm{GO}}$

해설

 $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}, \overline{\mathrm{BF}} = \overline{\mathrm{DH}}$ 이므로 $\overline{\mathrm{FO}} = \overline{\mathrm{HO}}$ 따라서 사각형 EFGH는 평행사변형이다. ${f 12}$. 다음 그림의 평행사변형 ${f ABCD}$ 에서 ${f AE}$, ${f BF}$ 는 각각 ${\it \angle A}$, ${\it \angle B}$ 의 이등 분선이다. 이 때, □ABEF는 어떤 사각형인가?

① 직사각형


해설

②마름모 ③ 정사각형 ④ 등변사다리꼴 ⑤ 사다리꼴

 $\angle ABF = \angle EFB = \angle EBF$ 이므로 $\overline{BE} = \overline{FE}$

이웃하는 변의 길이가 같은 평행사변형이므로 마름모이다.

13. 다음 그림과 같은 평행사변형 ABCD에서 \angle ACB = \angle ACD 이고, $\overline{\rm AD} = 4 {\rm cm}$ 일 때, \Box ABCD의 둘레를 구하면?

314cm

④ 15cm

(5) 16cm

AD = 4cm 이므로 둘레는 4 × 4 = 16(cm) 이다.

 $\angle ACB = \angle ACD$ 이므로 $\Box ABCD$ 는 마름모이다.

② 13cm

해설

14. 다음 그림의 $\square ABCD$ 는 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이고, \overline{AC} $//\overline{DE}$, $\angle DOC = 60$ °이다. $\angle x$ 의 크기는?

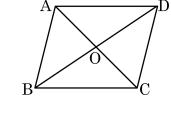
B C E

 340° 450° 560°

 $\angle BOD$ 는 평각이므로 $\angle BOC = 120\,^{\circ}$ 이다.

① 20°

 $\overline{
m BC}$ 는 공통, 등변사다리꼴의 성질에 따라 $\overline{
m AB}=\overline{
m DC}$, $\angle ABC=\angle DCB$ 이므로 $\triangle ABC\equiv\triangle DCB$


따라서 ∠DBC = ∠ACB이므로 ΔOBC는 이등변삼각형이다.

∴ ∠OBC = ∠OCB = 30° ĀC // DE 이므로 ∠DEC = ∠OCB (∵ 동위각)

AC // DE O □ □ □ □ ZDEC∴ $\angle x = 30 \circ$

... 2.1 — 00

15. 다음 평행사변형 ABCD가 직사각형이 되려면 다음 중 어떤 조건이 더 있어야 하는지 모두 골라라.

⊕ NOIDD

평행사변형이 직사각형이 되려면, 한 각이 90°이거나, 대각선의

길이가 같아야 한다.