1. 9 의 제곱근 중 작은 수와 25 의 제곱근 중 큰 수의 합을 구하여라.

▶ 답: ▷ 정답: 2

9 의 제곱근: ±3 25 의 제곱근: ±5 9 의 제곱근 중 작은 수와 25 의 제곱근 중 큰 수의 합은 -3+5=2

2. 196의 제곱근을 각각 x, y라 할 때, $\sqrt{3x-2y+11}$ 의 제곱근을 구하여라. (단, x>y)

답:

▷ 정답: ±3

- 해설 제공하

제곱하여 196이 되는 수 중 x > y인 수는 x = 14, y = -14 이므로 $\sqrt{3x - 2y + 11} = \sqrt{81} = 9$ 따라서 9의 제곱근은 ±3이다.

3. 다음 표의 수 중 근호를 사용하지 않고 나타낼 수 있는 수들을 찾아 색칠한 후 이 수들이 나타내는 수를 아래쪽에 색칠하였을 때 두 그림이 나타내는 수를 말하여라.

$\sqrt{0.4}$	Ī	$\sqrt{2}$	8		$\overline{15}$	1	$\sqrt{0.01}$	$\sqrt{-1}$	16
$\sqrt{18}$		$\sqrt{1}$	3	$\sqrt{1}$	100		$\sqrt{25}$	√ <u>-</u>	16
$\sqrt{-0}$.	9	$\sqrt{0}$)	$\sqrt{1}$	120		$\sqrt{36}$	$\sqrt{2}$	0
$\sqrt{49}$,	$\sqrt{3}$)	√	81		$\sqrt{64}$	$\sqrt{0}$.	06
$\sqrt{-3}$	6	√;	3	√.	- 9		$\sqrt{4}$	√8	3
	1					_			
_5		6		3	0		25		

-10	-0.3	16	8	11
-1	7	9	0.1	-4
15	10	-10	-6	-13
-7	2	0.3	5	12

▷ 정답: 42

▶ 답:

	$\sqrt{0.4}$ $\sqrt{18}$		$\sqrt{13}$		$ \begin{array}{c c} \sqrt{15} \\ \sqrt{100} \\ \hline \sqrt{120} \end{array} $		$\frac{\sqrt{0.01}}{\sqrt{25}}$	$ \begin{array}{c c} \sqrt{-16} \\ \hline \sqrt{-16} \end{array} $
_	$\sqrt{-0}$.	9	$\sqrt{0}$				$\sqrt{36}$	$\sqrt{20}$
	$\sqrt{49}$		$\sqrt{6}$	<u>,</u>	√	81	$\sqrt{64}$	$\sqrt{0.09}$
	$\sqrt{-30}$	6	√3	3	√	-9	$\sqrt{4}$	$\sqrt{8}$
	-5		6		3	0	25	
	-10	-	-0.3		16	8	11	
	-1		7		9	0.1	-4	
	15		10	-	10	-6	-13	
	-7		2		0.3	5	12	

- 다음 중 근호를 사용하지 않고 나타낸 수로 올바른 것은? **4.**

- ① $-\sqrt{25} = 5$ ② $-\sqrt{(-6)^2} = 6$ ② $-\sqrt{(\sqrt{4})^2} = 7$ ④ $-\left(\sqrt{\frac{4}{3}}\right)^2 = \frac{4}{3}$

- ① $-\sqrt{25} = -5$ ② $-\sqrt{(-6)^2} = -6$

5. a < 0 일 때, $\sqrt{64a^2}$ 을 간단히 한 것으로 옳은 것을 고르면?

③ 8*a*

- ① $-64a^2$ ② -8a
- $\textcircled{4} \ 8a^2 \qquad \qquad \textcircled{5} \ 64a^2$

해설 8a < 0 이므로

 $\sqrt{64a^2} = \sqrt{(8a)^2} = -(8a) = -8a$

다음 중 옳지 <u>않은</u> 것은? 6.

- a > 0 일 때, $\sqrt{(-a)^2} = a$ 이다. a < 0일 때, $-\sqrt{(-a)^2} = a$
- a > 0 일 때, $\sqrt{16a^2} = 4a$ 이다. $\sqrt{a^2} = |a|$ 이다.
- a < 0 일 때, $\sqrt{(3a)^2} = 3a$ 이다

해설

- a > 0 일 때, $\sqrt{(-a)^2} = a$ ② a < 0 일 때, $-\sqrt{(-a)^2} = -(-a) = a$
- a > 0 일 때, $\sqrt{16a^2} = 4a$ a 의 부호와 관계없이 $\sqrt{a^2}=|a|$
- a < 0 일 때, $\sqrt{(3a)^2} = -3a$

7. 다음 중 가장 큰 값은?

- $\sqrt{4^2} \sqrt{2^2}$ ② $\sqrt{3^2} + \sqrt{2^2}$ ③ $\sqrt{(-5)^2} \sqrt{(-2)^2}$ ④ $\sqrt{3^2} \sqrt{(-2)^2}$ $\sqrt{4^2} - \sqrt{2^2}$
- $\sqrt{5}$ $\sqrt{25} + (-\sqrt{2})^2$

$\sqrt{4^2} - \sqrt{2^2} = 4 - 2 = 2$

- $\sqrt{3^2} + \sqrt{2^2} = 3 + 2 = 5$ ③ $\sqrt{(-5)^2} \sqrt{(-2)^2} = 5 2 = 3$
- $\sqrt{3^2} \sqrt{(-2)^2} = 3 2 = 1$ ⑤ $\sqrt{25} + (-\sqrt{2})^2 = 5 + 2 = 7$ 이므로 $\sqrt{25} + (-\sqrt{2})^2$ 가 가장 크다.

8.
$$\sqrt{36} - \sqrt{(-5)^2} + \sqrt{81} \times \sqrt{\frac{4}{9}}$$
 를 간단히 하면?

① 3 ② 7 ③ 10 ④ 15 ⑤ 17

해설
$$\sqrt{36} - \sqrt{(-5)^2} + \sqrt{81} \times \sqrt{\frac{4}{9}} = 6 - 5 + 9 \times \frac{2}{3} = 7$$

9. a < 0 일 때, $\sqrt{4a^2} - \sqrt{(-2a)^2}$ 을 간단히 하면?

① 0 2 -6a 3 6a 4 -4a 5 4a

해설 $\sqrt{4a^2} - \sqrt{(-2a)^2} = \sqrt{(2a)^2} - \sqrt{(-2a)^2}$ = -2a - (-2a)= -2a + 2a = 0

10. a > 0 일 때, $A = \sqrt{(-a)^2} + (-\sqrt{a})^2 + \sqrt{a^2} - \sqrt{a^2}$ 일 때, \sqrt{A} 의 값은?

① -3a

- ③ a ② -2a
- $4\sqrt{2a}$
- \bigcirc $\sqrt{3a}$

A = |-a| + a + |a| - |a| = 2a $\sqrt{A} = \sqrt{2a}$

11. x > 2 일 때, 다음 중 $\sqrt{(x-2)^2} - \sqrt{(2-x)^2}$ 의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

x > 2 이므로 x - 2 > 0, 2 - x < 0(준식) = $(x - 2) - \{-(2 - x)\}$ = (x - 2) - (x - 2) = 0

- 12. $\sqrt{2 \times 3 \times 7^2 \times a}$ 가 정수가 되기 위한 가장 작은 자연수 a 를 구하면?
 - ① 2 ② 3
- **3**6 **4**7 **5**42

해설 $\sqrt{294a} = \sqrt{2 \times 3 \times 7^2 \times a}$ 이 정수가 되기 위해서는 근호안의

수가 완전제곱수가 되어야 하므로 $a=2\times 3\times k^2$ 이 되어야 한다. .. 가장 작은 자연수 a는 k=1일 때이므로 $a=2\times3\times1^2=6$

13. $\sqrt{10x}$ 가 자연수가 되게 하는 가장 작은 자연수 x 를 구하여라.

답:

▷ 정답: 10

해설 $\sqrt{10x}$ 가 자연수가 되려면 근호 안의 값은 제곱수가 되어야 한다.

 $\sqrt{10x} = \sqrt{2 \times 5 \times x}$ 이므로 x = 10 이다.

14. $\sqrt{\frac{24}{x}}$ 가 정수가 될 때, 가장 작은 정수 x 값을 구하여라.

답:

▷ 정답: 6

 $\sqrt{\frac{24}{x}} = \sqrt{\frac{2^3 \times 3}{x}}$ 에서 분자의 소인수의 지수가 모두 짝수가 되어야 하므로 $x = 2 \times 3 = 6$ 이다.

- **15.** $\{x|300 \le x \le 600, x$ 는 정수 $\}$ 에 대하여 $\sqrt{3} \times \sqrt{x}$ 가 양의 정수가 되도 록 하는 정수 x 의 개수를 구하면?
 - ①5개 ④ 101 개 ⑤ 301 개

 - ② 52개 ③ 100개

 $\sqrt{3}$ × $\sqrt{x} = \sqrt{3x}$ 가 양의 정수일 때, 3x 는 제곱수가 되어야 하고

해설

이 때, $x = 3k^2(k 는 자연수)$ 이다. $300 \leq 3k^2 \leq 600 \Leftrightarrow 100 \leq k^2 \leq 200$ $k^2 = 10^2, \ 11^2, \ 12^2, \ 13^2, \ 14^2$

∴ *x* 의 개수는 5 개

16. 2x - y = 3 일 때, $\sqrt{2x + y}$ 가 자연수가 되게 만드는 가장 작은 두 자리 자연수 x 는?

① 10 ② 13 ③ 16 ④ 19 ⑤ 22

 $2x - y = 3 \Rightarrow y = 2x - 3$ $\sqrt{2x + y} = \sqrt{2x + 2x - 3} = \sqrt{4x - 3}$

x 는 최소한 가장 작은 두자리 수인 10 이상이어야 하므로, 근호 안의 제곱수는 7^2 이상이 되어야 한다. $(\sqrt{4 \times 10 - 3} = \sqrt{37} > 7^2)$ $\therefore \sqrt{4x - 3} = 7$ 일 때, x = 13 이므로 성립한다.

 $\therefore x = 13$

해설

- 17. $\sqrt{120-x} \sqrt{5+x}$ 의 값이 가장 큰 자연수가 되도록 하는 자연수 x 의 값을 구하여라.
 - ▶ 답:

▷ 정답: x = 20

 $\sqrt{120-x}$, $\sqrt{5+x}$ 둘 다 자연수가 되어야 한다. $\sqrt{120-x}$ 가

최대 $\sqrt{5+x}$ 가 최소가 되려면 x=20 이어야 한다.

18. 다음 중 가장 큰 수는?

① $\sqrt{(-7)^2}$ ② $-(-\sqrt{3})^2$ ③ $\sqrt{20}$ ④ 6 ⑤ $\sqrt{45}$

 $7 = \sqrt{49}$ ② -3 $\sqrt{20}$ $6 = \sqrt{36}$ $\sqrt{45}$ 19. 다음의 두 4A, B에 대하여 A+B를 계산하여라.

$$A = \sqrt{(3 - \sqrt{10})^2} - \sqrt{(\sqrt{10} - 3)^2}$$

$$B = \sqrt{(3 - 2\sqrt{2})^2} + \sqrt{(2\sqrt{2} - 2)^2}$$

▷ 정답: 1

해설

▶ 답:

 $3 < \sqrt{10}, 2 < 2\sqrt{2} < 3$ $A = -(3 - \sqrt{10}) - (\sqrt{10} - 3) = 0$

$$B = (3 - 2\sqrt{2}) + (2\sqrt{2} - 2) = 1$$

$$\therefore A + B = 0 + 1 = 1$$

20. 다음 중 부등식 $4 < \sqrt{x} \le 5$ 를 만족하는 자연수 x 가 <u>아닌</u> 것은?

326

① 18 ② 20 ③ 22 ④ 24

 $4 = \sqrt{16} < \sqrt{x} \le 5 = \sqrt{25}$ $\therefore x = 17, 18, 19, 20, 21, 22, 23, 24, 25$

21. $\sqrt{30} < x < \sqrt{50}$ 을 만족하는 자연수 x 의 값을 모두 구하여라.

답:답:

▷ 정답: x = 6

> 정답: *x* = 7

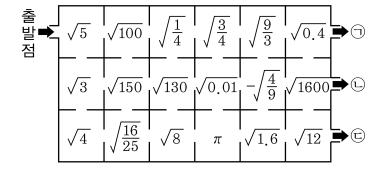
 $6 = \sqrt{36}$, $7 = \sqrt{49}$

- $\sqrt{3} + 4$ ② $\sqrt{0.49}$ ③ $1.42585858 \cdots$ ④ $-\sqrt{\frac{36}{25}}$ ⑤ $\sqrt{9} 2$

 $\sqrt{0.49} = 0.7$: 유리수 ③ $1.42585858 \cdots = 1.42\dot{5}\dot{8}$: 유리수

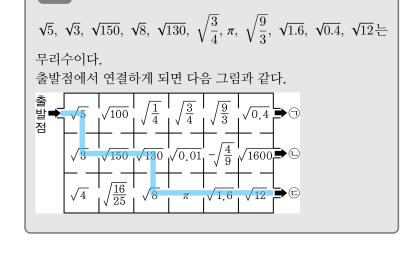
- $-\sqrt{\frac{36}{25}} = -\frac{6}{5}$: 유리수
- $\sqrt{9}-2=3-2=1$: 유리수

23. 다음 보기에서 무리수는 몇 개인지 구하여라.


<u>개</u>

정답: 3<u>개</u>

▶ 답:


 $-\frac{1}{4}$, $0.\dot{2}=\frac{2}{9}$, $\sqrt{2^4}=2^2=4$ 는 유리수이다. π , $\sqrt{2}-1$, $\sqrt{5}$ 는 무리수이다. 따라서 무리수는 3 개이다.

24. 다음 그림에서 출발점부터 시작하여 무리수를 찾아 나가면 어느 문으로 나오게 되는지 말하여라.

▷ 정답: ②

답:

25. 다음 식을 만족하는 x의 값 중에서 유리수가 <u>아닌</u> 것을 고르면?

- ① $\frac{\sqrt{x}}{3} = \frac{1}{6}$ ② $\sqrt{2x} = 4$ ③ $\frac{x^2}{6} = \frac{1}{3}$ ④ 2x + 1 = 1 ⑤ 2x 1 = 0.7

③
$$\frac{x^2}{6} = \frac{1}{3}$$
 이면 $x^2 = 2$
 $\therefore x = \pm \sqrt{2}$ 이다.

26. 다음 식 중에서 x 의 값이 무리수인 것은?

①
$$x^2 = 2$$

①
$$x^2 = 25$$
 ② $x^2 = \frac{81}{49}$ ③ $x^2 = 0.0016$ ④ $x^2 = \frac{3}{27}$ ⑤ $x^2 = \frac{49}{1000}$

(4)
$$x^2 =$$

$$(5)$$
 $x^2 = \frac{10}{100}$

③
$$x^2 = \frac{49}{1000}$$

 $x = \frac{\pm 7}{10\sqrt{10}}$: 무리수
① $x = \pm 5$: 유리수
② $x = \pm \frac{9}{7}$: 유리수
③ $x = \pm 0.04$: 유리수
④ $x = \pm \sqrt{\frac{3}{27}} = \pm \sqrt{\frac{1}{9}} = \pm \frac{1}{3}$: 유리수

27. 다음 중 무리수로만 묶은 것은?

- $\sqrt{0}$, $\sqrt{2}$, $\sqrt{4}$ ② $\frac{2}{3}$, $0.\dot{3}$, $-\frac{1}{4}$ ③ $\sqrt{3}$, $\sqrt{5}$, π ④ $\sqrt{\frac{1}{10}}$, $\sqrt{9}$, $\sqrt{8}$ ⑤ $\sqrt{(-11)^2}$, $-\sqrt{2}$, $\sqrt{7}$

- $\sqrt{0} = 0$, $\sqrt{4} = 2$: 유리수 ② $\frac{2}{3}$, $0.\dot{3}$, $-\frac{1}{4}$: 유리수 ④ $\sqrt{9} = 3$: 유리수 ⑤ $\sqrt{(-11)^2} = 11$: 유리수

. 다음 중 유리수인 것을 모두 고르면? (정답 2개)

① π

 $\sqrt{1.21}$

 $3\sqrt{0.1}$

 $\textcircled{4} \ \ 0.01001000100001...$

0.121

 π 는 순환하지 않는 무한소수이다.(무리수이다.)

- $\sqrt{1.21} = \frac{11}{10}$ 의 분수꼴로 나타낼 수 있기 때문에 유리수이다. $\sqrt{0.1}$ 는 순환하지 않는 무한소수이다.(무리수이다.)
- ④ 0.01001000100001... 비순환소수다.(무리수이다.)
- $0.\dot{1}2\dot{1} = \frac{121}{900}$ 의 분수꼴로 나타낼 수 있기 때문에 유리수이다.

29. 다음 중 옳은 것은?

- ① $\sqrt{4} + \sqrt{9} = \sqrt{13}$ ③ $\sqrt{25} > 5$
- ② 0 의 제곱근은 2 개이다.④ π 3.14 는 유리수이다.
- $\sqrt[3]{\sqrt{25}} \sqrt{16} = \sqrt{1}$
- Ο π 0.14 <u>C</u> || -| | | -

① $\sqrt{4} + \sqrt{9} = 2 + 3 = 5 = \sqrt{25}$

- ② 0 의 제곱근은 0 이므로 1 개
- $3 \sqrt{25} = 5$
- ④ (무리수) (유리수) = (무리수)

30. 다음 중 옳은 것은?

- ① 모든 순환하지 않는 무한소수는 무리수이다. ② 모든 자연수의 제곱근은 무리수이다.
- ③ 1의 제곱근은 1 자신뿐이다.
- ④ 모든 \dot{r} \dot{r} \dot{r} 에 대하여 $\sqrt{a^2} = a$ 이다.
- ⑤ $1+\sqrt{2}$ 는 무리수가 아니다.

② $\sqrt{1} = 1$

③ 1 의 제곱근은 ±1 이다.

해설

- ④ a > 0 이면 $\sqrt{a^2} = a$ 이다.
- ⑤ $\sqrt{2}$ 가 순환하지 않는 무한소수이므로 $1+\sqrt{2}$ 도 순환하지 않는 무한소수이므로 무리수이다.

31. 다음 중 항상 성립하는 것은?

- ① (무리수) + (유리수) = (무리수) ② (무리수) + (무리수) = (무리수)
- ③ (무리수) × (무리수) = (무리수)
- ④ (무리수) ÷ (무리수) = (무리수)
- ⑤ (유리수)×(무리수) = (무리수)

② $\sqrt{2} + (-\sqrt{2}) = 0$: 유리수

해설

- ③ $\sqrt{2} \times \sqrt{2} = 2$: 유리수 ④ $\sqrt{2} \div \sqrt{2} = 1$: 유리수
- ④ $\sqrt{2} \div \sqrt{2} = 1$: 유리수 ⑤ $0 \times \sqrt{2} = 0$: 유리수

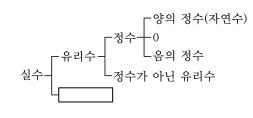
32. 다음 보기 중 옳은 것을 모두 골라라.

 $\frac{1}{\sqrt{5}}$ 는 자연수가 아니다. $3\sqrt{4}$ 는 무리수이다. $\sqrt{0.01}$ 는 정수가 아닌 유리수이다. $\sqrt{9} \times \frac{\sqrt{4}}{4}$ 는 자연수이다.

▶ 답:

▶ 답:

▷ 정답: ⑤

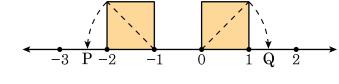

▷ 정답: ②

 \bigcirc $\frac{1}{\sqrt{5}}$ 는 무리수이다. \bigcirc $3\sqrt{4}$ 는 6이므로 자연수이므로 무리수가 아니다.

 \bigcirc $\sqrt{0.01} = 0.1$ 이므로 정수가 아닌 유리수이다.

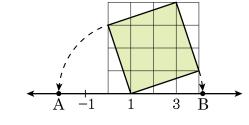
(2) $\sqrt{9} \times \frac{\sqrt{4}}{4} = 3 \times \frac{2}{4} = \frac{3}{2}$ 이므로 자연수가 아니다.

33. 다음 중 만의 수에 해당하지 <u>않는</u> 것은?


- ① $\sqrt{5} + 1$ ② $-\frac{\pi}{2}$ ③ $\sqrt{0.9}$ ④ $-\sqrt{2.89}$ ⑤ $0.1234\cdots$

빈칸에 들어갈 용어는 무리수이다. 무리수가 아닌 것을 찾는다.

 $4 - \sqrt{2.89} = -\sqrt{\frac{289}{100}} = -\sqrt{\left(\frac{17}{10}\right)^2} = -\frac{17}{10}$


34. 다음 그림에서 수직선 위의 사각형은 정사각형이다. 이때, 점 P(a), Q(b) 에서 a-b 의 값을 구하면?

- $\textcircled{4} -1 \sqrt{2}$ $\textcircled{5} -1 + \sqrt{2}$
- ① $-1 2\sqrt{2}$ ② $-1 + 2\sqrt{2}$ ③ $1 2\sqrt{2}$

 $P(-1 - \sqrt{2})$, $Q(\sqrt{2})$ 이므로 $a - b = -1 - \sqrt{2} - \sqrt{2} = -1 - 2\sqrt{2}$

35. 다음 중 아래 수직선에서의 점 A , 점 B 의 좌표를 고르면?

- ① $A:1-\sqrt{10}$, $A:1+\sqrt{10}$
- ② 점 A:1+ $\sqrt{10}$, 점 B:1- $\sqrt{10}$
- ③ 점 A:1+ $\sqrt{10}$, 점 B:1+ $\sqrt{10}$ ④ 점 A:-1- $\sqrt{10}$, 점 B:- $\sqrt{10}$
- ⑤ $A:1-\sqrt{10}$, $A:1-\sqrt{10}$

내부의 기울어진 정사각형의 넓이가 10 이므로 한 변의 길이는 $\sqrt{10}$ 이다.

해설

36. 다음 보기 중 옳은 것을 모두 골라라. 보기 -

- ① 두 자연수 2와 3 사이에는 무수히 많은 무리수가 있다. ⑥ $\sqrt{3}$ 과 $\sqrt{5}$ 사이에는 무수히 많은 유리수가 있다.
- © 수직선은 무리수에 대응하는 점으로 완전히 메울 수 있다.
- ② -2와 √2 사이에는 4개의 정수가 있다.
 ③ 1과 2사이에는 2개의 무리수가 있다.
- ullet $\sqrt{5}$ 와 $\sqrt{7}$ 사이에는 1개의 자연수가 있다.
- 답:답:

▷ 정답: ⑤

▷ 정답: □

⑤. \bigcirc 두 자연수 2 와 3 사이에는 무수히 많은 무리수가 있다. ⑥. \bigcirc $\sqrt{3}$ 과 $\sqrt{5}$ 사이에는 무수히 많은 유리수가 있다.

©. x 수직선은 무리수에 대응하는 점으로 완전히 메울 수 있다.(유리수에 대응하는 점을 메울 수 없다.)

②. $\times -2$ 와 $\sqrt{2}$ 사이에는 4 개의 정수가 있다.(-1, 0, 1 3개가 있다.)

②. × 1 과 2 사이에는 2 개의 무리수가 있다.(무수히 많은 무리수가 있다.)
 ③. × √5 와 √7 사이에는 1 개의 자연수가 있다.(√5 와 √7

사이에는 자연수가 없다.)

37. 다음 중 두 실수의 대소 관계가 옳지 <u>않은</u> 것은?

- ① $\sqrt{5} 1 > 1$
- ② $5 \sqrt{5} > 5 \sqrt{6}$
- $\boxed{\bigcirc} \sqrt{6} > \sqrt{5}$
- ③ $\sqrt{2} 1 < \sqrt{3} 1$ ④ $\sqrt{18} + 2 > \sqrt{15} + 2$

해설

⑤ $-\sqrt{6} - (-\sqrt{5}) = -\sqrt{6} + \sqrt{5} < 0$ ∴ $-\sqrt{6} < -\sqrt{5}$ **38.** 세 수 $a = \sqrt{8}$, $b = 2 + \sqrt{2}$, c = 3 의 대소 관계를 나타내면?

- ① a < b < c $\textcircled{4} \ c < b < a$ $\textcircled{5} \ b < a < c$

해설

 $3 = \sqrt{9}$ 이므로 $\sqrt{8} < 3$, $b - c = 2 + \sqrt{2} - 3 = \sqrt{2} - 1 > 0$ 이므로 b > c $\therefore a < c < b$

39. 다음 수직선 위의 점 A,B,C,D에 대응하는 수는 $\sqrt{2}$, $\sqrt{3}+2$, $\sqrt{2}-1$, $4-\sqrt{3}$ 이다. 점 A, B, C, D에 대응하는 값을 각각 a,b,c,d라고 할 때, a+b와 c+d의 값을 각각 바르게 구한 것은?

- ① $\sqrt{2} + \sqrt{3} + 2$, $\sqrt{2} \sqrt{3} + 3$
- ② $\sqrt{2} + \sqrt{3} + 3$, $\sqrt{2} + \sqrt{3} + 2$
- ③ $\sqrt{2} \sqrt{3} + 3$, $\sqrt{2} + \sqrt{3} + 2$ ④ $2\sqrt{2} - 1$, 6
- \bigcirc 6, $2\sqrt{2}-1$

해설 $1 < \sqrt{2} < 2 : B = \sqrt{2}$

 $0 < \sqrt{2} - 1 < 1 : A = \sqrt{2} - 1$ $a + b = (\sqrt{2} - 1) + (\sqrt{2}) = 2\sqrt{2} - 1$

 $3 < \sqrt{3} + 2 < 4 : D = \sqrt{3} + 2$ $2 < 4 - \sqrt{3} < 3 : C = 4 - \sqrt{3}$

 $c + d = (4 - \sqrt{3}) + (\sqrt{3} + 2) = 6$

40. 다음 중 $\sqrt{2}$ 와 $\sqrt{5}$ 사이의 수가 <u>아닌</u> 것은?

- ④ $\sqrt{5} 0.01$ ⑤ 2
- ① $\frac{\sqrt{2} + \sqrt{5}}{2}$ ② $\sqrt{3}$ ③ $\sqrt{2} 0.1$

 $\sqrt{2}$ – 0.1 은 $\sqrt{2}$ 보다 작은 수이다.