1. 다음 보기 중 옳지 <u>않</u>은 것을 모두 골라라.보기

- \bigcirc a > 0 일 때, a 의 제곱근은 $\pm \sqrt{a}$ 이다. \bigcirc 5 의 제곱근은 $\pm\sqrt{5}$ 이다.
- ⓒ -9 의 제곱근은 -3 이다.
- ② 0 의 제곱근은 0 이다. ◉ 음수의 제곱근은 1 개이다.

▶ 답:

▷ 정답: □

▷ 정답: □

▶ 답:

📵 음수의 제곱근은 없다.

ⓒ −9 의 제곱근은 존재하지 않는다.

- **2.** a > 0, b > 0 일 때, 옳지 <u>않은</u> 것은?
 - ① $a\sqrt{b} = \sqrt{a^2b}$ ③ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- ③ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ ⑤ a > b 이면 $\sqrt{a} > \sqrt{b}$

 $\sqrt{a} + \sqrt{b} > \sqrt{a+b}$

3. 다음 주어진 식이 자연수 n이 되도록 하는 m의 최솟값을 차례대로 구하여라.

	자연수 <i>m</i> 의 최솟값	n
$n=\sqrt{65m}$	\bigcirc	
$n=\sqrt{75m}$		
$n = \sqrt{\frac{80}{m}}$	©	

답: ▶ 답:

답:

▷ 정답 : ① : 65 ▷ 정답 : □ : 3

▷ 정답 : □ : 5

 \bigcirc 65m = $5 \times 13 \times m$ 이므로 m = 5×13 = 65 이고 n = $\sqrt{65 \times 65} = 65$ 이다.

 \bigcirc 75 $m = 3 \times 5^2 \times m$ 이므로 m = 3 이코 $n = \sqrt{75 \times 3} = 15$ 이다.

(ⓒ) $\frac{80}{m} = \frac{2^4 \times 5}{m}$ 이므로 m = 5 이코 $n = \sqrt{\frac{80}{5}} = 4$ 이다.

4. 다음 그림과 같이 수직선 위에 한 변의 길이가 1인 정사각형 ABCD 를 그렸다. 수직선 위의 두 점 P, Q에 대응하는 두 성과 작표의 곱을 구하여라.

답:

➢ 정답: √2

수직선 위의 두 점 P, Q 에 대응하는 두 점의 좌표는 다음과 같다. $P=2-\sqrt{2}$ Q = $1+\sqrt{2}$ (구하는 값) = $\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)$ = $2+2\sqrt{2}-\sqrt{2}-2$ = $\sqrt{2}$ 5. $\sqrt{45} + \sqrt{80} - k\sqrt{5} = 0$ 일 때, 유리수 k의 값은?

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

 $3\sqrt{5} + 4\sqrt{5} - k\sqrt{5} = 0$ $7\sqrt{5} = k\sqrt{5}$ $\therefore k = 7$

196의 제곱근을 각각 x, y라 할 때, $\sqrt{3x-2y+11}$ 의 제곱근을 구하 **6.** 여라. (단, x > y)

▶ 답:

▷ 정답: ±3

해설

제곱하여 196이 되는 수 중 x > y인 수는 x = 14, y = -14 이므로 $\sqrt{3x - 2y + 11} = \sqrt{81} = 9$ 따라서 9의 제곱근은 ±3이다.

7. 두 실수 a, b 에 대하여 a-b<0, ab<0 일 때, $\sqrt{a^2}+\sqrt{b^2}-\sqrt{(-a)^2}+\sqrt{(-b)^2}$ 을 간단히 한 것은?

① 0 ② 2a ③ a-b ④ 2b ⑤ a+b

해설

ab < 0 이면 a와 b의 부호가 다르다. a - b < 0 이면 a < b 이므로 a < 0, b > 0 이다. a < 0 이므로 $\sqrt{a^2} = -a$, b > 0 이므로 $\sqrt{b^2} = b$ a < 0 이므로 $\sqrt{(-a)^2} = \sqrt{a^2} = -a$ b > 0 이므로 $\sqrt{(-b)^2} = \sqrt{b^2} = b$ 따라서 $\sqrt{a^2} + \sqrt{b^2} - \sqrt{(-a)^2} + \sqrt{(-b)^2}$ = -a + b - (-a) + b= 2b

- 8. 실수 a, b 에 대하여 a < 0, ab < 0 일 때, $\sqrt{(2a-b)^2} + \sqrt{a^2} \sqrt{(b-a)^2}$ 을 간단히 하면?
- \bigcirc -2a-2b
- 3 -2a + 2b
- ⑤ 4a 2b

a < 0, b > 0 이므로 2a - b < 0, b - a > 0 $\sqrt{(2a - b)^2} + \sqrt{a^2} - \sqrt{(b - a)^2}$

해설

= |2a - b| + |a| - |b - a|= -2a + b - a - b + a = -2a

a는 유리수, b는 무리수일 때, 다음 중 그 값이 항상 무리수인 것은? 9.

 $3 a^2 - b^2$

①
$$\sqrt{a} + b$$
 ② $\frac{b}{a}$
④ ab ③ $\frac{b}{a}$

①
$$a=2, b=-\sqrt{2}$$
 일 때, $\sqrt{2}+(-\sqrt{2})=0$ 이므로 유리수이다.
③ $b=\sqrt{2}$ 일 때, $b^2=2$ 이므로 a^2-b^2 는 유리수이다.
④ $a=0$ 일 때, $ab=0$ 이므로 유리수이다.
⑤ $a=2, b=\sqrt{8}$ 일 때, $\frac{\sqrt{8}}{\sqrt{2}}=2$ 이므로 유리수이다.

10. 두 실수 a, b 가 $a = \sqrt{7} - 6, b = \sqrt{3} + \sqrt{7}$ 일 때, 다음 중 옳은 것은?

 \bigcirc b-a>0

② ①, 心

 \bigcirc \bigcirc , \bigcirc , \bigcirc \P \P , \square , \square , \square

⑤ ¬, □, □, □, □

 $\bigcirc)$

 $b-a = \sqrt{3} + \sqrt{7} - \left(\sqrt{7} - 6\right)$ $= \sqrt{36} + \sqrt{9} > 0$ $\therefore b-a>0$ $a-b = \sqrt{7} - 6 - \left(\sqrt{3} + \sqrt{7}\right)$ $= -6 - \sqrt{3}$ $= -\sqrt{36} - \sqrt{3} < 0$ $\therefore a - b < 0$ © $a = \sqrt{7} - 6 = \sqrt{7} - \sqrt{36} < 0$ $b = \sqrt{3} + \sqrt{7} > 0$ ∴ *ab* < 0 (a) $a+3=(\sqrt{7}-6)+3=\sqrt{7}-3=\sqrt{7}-\sqrt{9}<0$ $\therefore a + 3 < 0$ © (좌변)= $b - \sqrt{7} = \sqrt{3} + \sqrt{7} - \sqrt{7} = \sqrt{3}$ (우변)= 2 = $\sqrt{4}$ $\therefore b - \sqrt{7} < 2$

11. 다음 수직선 위의 점 A,B,C,D에 대응하는 수는 $\sqrt{12}+2,3\sqrt{2}-4,4 2\sqrt{2},3+\sqrt{3}$ 이다. 점 A,B,C,D에 대응하는 수를 각각 a,b,c,d라 할 때, 다음 중 <u>틀린</u> 것은?

① $a+b=\sqrt{2}$ ② $c+d=3\sqrt{3}+5$

③ 3(a+b) > c+d ④ b-a > 0⑤ c - d < 0

해설

$\sqrt{12} + 2 = 5. \times \times \times \leftarrow d$

 $3\sqrt{2} - 4 = 0. \times \times \times \leftarrow a$

 $4 - 2\sqrt{2} = 1. \times \times \times \leftarrow b$ $3 + \sqrt{3} = 4. \times \times \times \leftarrow c$

 $3 a + b = \sqrt{2} \rightarrow 3(a+b) = 3\sqrt{2}$

 $c+d=3\sqrt{3}+5$

 $\therefore 3(a+b) - (c+d) = 3\sqrt{2} - (3\sqrt{3} + 5)$ $= \sqrt{18} - \sqrt{27} - 5 < 0$

 $\therefore 3(a+b) < c+d$

- 12. $8\sqrt{22} \times \sqrt{\frac{26}{11}}$ 을 계산하여 근호 안의 수가 가장 작은 수가 되도록 $a\sqrt{b}$ 꼴로 나타낼 때, a-b 의 값을 구하면?
 - ① 1 ②3 ③ 5 ④ 7 ⑤ 9

8 $\sqrt{22} \times \sqrt{\frac{26}{11}} = 8\sqrt{\frac{11 \times 2 \times 2 \times 13}{11}} = 16\sqrt{13}$ $\therefore a = 16, \ b = 13$ $\therefore a - b = 16 - 13 = 3$

13. $\frac{1}{2+\sqrt{3}}$ 의 정수 부분을 $a, \frac{1}{2-\sqrt{3}}$ 의 소수 부분을 b 라고 할 때, 2a + 3b 의 값을 구하면? (단, 0 < b < 1)

① $\sqrt{3} - 3$ ② $2\sqrt{3} - 1$ ③ $2\sqrt{3} - 3$

- - $4 \ 3\sqrt{3} 1$ $3 \sqrt{3} 3$

해설 $\frac{1}{2+\sqrt{3}} = 2 - \sqrt{3} \circ | \text{므로 } a = 0 \quad \frac{1}{2-\sqrt{3}} = 2 + \sqrt{3} \circ | \text{므로}$ $b = \sqrt{3} - 1$ $2a + 3b = 3(\sqrt{3} - 1) = 3\sqrt{3} - 3$

- 14. 복사 용지로 많이 사용되고 있는 A4 용지는 A3용지를 반으로 잘라서 만든 것이고, A5 용지는 A4 용지를 반으로 잘라서 만든 것이다. 따라서, A3 용지와 A4 용지, A5 용지는 서로 닮음이다. 다음 그림에서 □ABCD 가 A3 용지라 하고, A3 용지의 가로의 길이를 1 이라고 할 때, A3 용지의 가로, 세로의 길이와 A5 용지의 가로, 세로의 길이의 합은?

- ① $\frac{(1+\sqrt{2})}{2}$ ② $\frac{(2+\sqrt{2})}{2}$ ③ $\frac{3(1+\sqrt{2})}{2}$ ④ ② $\frac{3(1-\sqrt{2})}{2}$

□ABCD 와 □DAEF 는 서로 닮음인 도형이므로 $\overline{\mathrm{AB}} = x$, $\overline{\mathrm{DF}} = \frac{1}{2}x$ 라 하면

1:
$$x = \frac{1}{2}x$$
: 1, $\frac{1}{2}x^2 = 1$, $x^2 = 2$

1:
$$x = \frac{1}{2}x$$
: 1, $\frac{1}{2}x^2 = 1$, $\frac{1}{2}x^2 = 1$

$$= (1 + \sqrt{2}) + \left(\frac{1}{2} + \frac{\sqrt{2}}{2}\right) = \frac{3(1 + \sqrt{2})}{2}$$

15. 다음 제곱근표를 이용하여 $\sqrt{2004}$ 의 값을 구하면?

	7	U	1	4	ว	4
	3.0	1.732	1.735	1.738	1.741	1.744
	4.0	2.000	2.002	2.005	2.007	2.010
	5.0	2.230	2.238	2.241	2.243	2.245
•						

① 44.72 ② 34.64 ③ 34.70 ④ 34.76

3 44.76

 $\sqrt{2004} = \sqrt{4 \times 501} = 2\sqrt{501}$ $= 2 \times \sqrt{5.01 \times 100}$

 $=20\sqrt{5.01}$

주어진 표에서 5.01 = 2.238

 $\therefore 20 \times 2.238 = 44.76$

해설

16. $x = \sqrt{3 - \sqrt{3 - \sqrt{3 - \cdots}}}$ 일 때, $x^2 + x + 1$ 의 값을 구하여라.

▶ 답:

▷ 정답: 4

$$x = \sqrt{3 - \sqrt{3 - \sqrt{3 - \cdots}}}$$
에서
$$\sqrt{3 - \sqrt{3 - \sqrt{3 - \cdots}}} = \sqrt{3 - x} = x$$
이므로
$$3 - x = x^2, x^2 + x = 3$$
$$\therefore x^2 + x + 1 = 4$$

17. $\sqrt{19} < \sqrt{5x} < \sqrt{699}$ 를 만족하는 x 의 값 중에서 $\sqrt{5x}$ 가 자연수가 되도록 하는 자연수 x 의 값은 몇 개인지 구하여라.

 ▶ 답:
 <u>개</u>

 ▷ 정답:
 5 <u>개</u>

✓ **61** • 5 <u>/11</u>

해설

√19 과 √699 사이의 자연수:

 $\sqrt{5^2}$, $\sqrt{6^2}$, $\sqrt{7^2}$, $\sqrt{8^2}$, \cdots , $\sqrt{24^2}$, $\sqrt{25^2}$, $\sqrt{26^2}$ 이 중에서 5 의 배수는 $\sqrt{5^2}$, $\sqrt{10^2}$, $\sqrt{15^2}$, $\sqrt{20^2}$, $\sqrt{25^2}$ \therefore 5 개

18. 정육면체 A, B의 겉넓이 비가 4:9이고, 두 정육면체의 부피의 합이 280 cm³ 일 때, A, B의 한 모서리의 길이를 각각 구하여라.

 $\underline{\mathrm{cm}}$

▶ 답:

▶ 답: $\underline{\mathrm{cm}}$

ightharpoonup 정답: $A=4\underline{\mathrm{cm}}$

ightharpoonup 정답: $B=6\underline{\mathrm{cm}}$

A, B의 한 모서리의 길이를 각각 $a \, \mathrm{cm}$, $b \, \mathrm{cm}$ 라고 하면

A, B의 겉넓이의 비는 $6a^2:6b^2=4:9$ 이므로 a:b=2:3

 $\therefore b = \frac{3}{2}a$ A, B의 부피의 함은 $a^3 + b^3 = 280$, $a^3 + \left(\frac{3}{2}a\right)^3 = 280$, $a^3 = 64$,

 $\therefore a = 4, b = 6$

따라서 A, B의 한 모서리의 길이는 각각 4cm, 6cm이다.

 ${f 19}$. 상수 $a=\sqrt{3}-\sqrt{2}$, $b=2\sqrt{2}+1$ 에 대하여, 유리수 $x,\ y$ 가 ax+by=2a + b를 만족할 때, x + y의 값을 구하여라.

▶ 답:

ightharpoonup 정답: x+y=3

주어진 식에 a, b를 각각 대입하면

해설

 $(\sqrt{3} - \sqrt{2})x + (2\sqrt{2} + 1)y = 2(\sqrt{3} - \sqrt{2}) + 2\sqrt{2} + 1$ 양변을 $\sqrt{3}$ 항과 $\sqrt{2}$ 항으로 각각 정리하면 $x\sqrt{3} + (2y - x)\sqrt{2} + y = 2\sqrt{3} + 1$ $\therefore x = 2, y = 1$ $\therefore x + y = 3$

20. 세 양의 정수 a, b, c 에 대하여 $\sqrt{a^2 + b^2 + c^2}$ 의 정수 부분이 4 일 때, abc 의 값이 될 수 있는 수를 모두 구하여라.

답:답:

▶ 답:

답:

▶ 답:

▶ 답:

▷ 정답: abc = 8

 \triangleright 정답: abc = 9

ightharpoonup 정답: abc = 4

> 정답: abc = 16

▷ 정답: abc = 18

> 정답: abc = 12

 $4 \le \sqrt{a^2 + b^2 + c^2} < 5 \text{ old}$ $16 < a^2 + b^2 + c^2 < 25$

 $16 \le a^2 + b^2 + c^2 < 25$ (a, b, c) = (1, 1, 4) (1, 2, 4) (1, 3, 3) (2, 2, 3) (2, 3, 3)

(2, 4, 2) 이므로 ∴ abc = 4, 8, 9, 12, 16, 18