
1.
$$\sqrt{(2-\sqrt{2})^2} - \sqrt{(1-\sqrt{2})^2}$$
 을 간단히 하면?

① 1 ② -1 ③ $3 - 2\sqrt{2}$ ④ $-3 + 2\sqrt{2}$ ⑤ $1 - 2\sqrt{3}$

 $1 < \sqrt{2} < 2$ 이旦로 $2 - \sqrt{2} > 0$, $1 - \sqrt{2} < 0$ $\left| 2 - \sqrt{2} \right| - \left| 1 - \sqrt{2} \right| = 2 - \sqrt{2} + 1 - \sqrt{2}$ $= 3 - 2\sqrt{2}$

2. 수직선 위의 점 A(1) 에서 B(2) 까지의 거리를 한 변으로 하는 정사 각형 ABCD 를 그렸다. $\overline{BD} = \overline{BP}, \ \overline{AC} = \overline{AQ}$ 인 점 P, Q 를 수직선 위에 잡을 때, P(a), Q(b) 에 대하여 a-2b 의 값은?

- ② $-2\sqrt{2}$
- ③ 0
- (4)
- ⑤ 4

 $\mathbf{Q}(1+\sqrt{2})$, $\mathbf{P}(2-\sqrt{2})$ ∴ $a-2b=(2-\sqrt{2})-2(1+\sqrt{2})=-3\sqrt{2}$ 이다.

해설

3. 다음 중 옳지 <u>않은</u> 것은?

- 무리수를 소수로 나타내면 순환하지 않는 무한 소수이다.
 두 무리수 √3 과 √5 사이에는 무수히 많은 유리수가 있다.
- ③ 두 정수 -1 과 3 사이에는 무수히 많은 유리수가 있다.
- ④ (무리수) + (무리수) = (무리수) 이다.⑤ 수직선 위의 모든 점은 실수에 대응된다.

④ $\sqrt{2} + (-\sqrt{2}) = 0$ 이므로 무리수와 무리수의 합은 유리수가

해설

될 수도 있다.

4. $4\sqrt{7} = \sqrt{a}$ 일 때, a의 값을 구하여라.

답:

> 정답: *a* = 112

 $4\sqrt{7} = \sqrt{4^2 \times 7} = \sqrt{112} = \sqrt{a}$ $\therefore a = 112$

해설
$$\frac{1}{\sqrt{18}} = \frac{1}{3\sqrt{2}} = \frac{\sqrt{2}}{6}$$

$$\frac{\sqrt{2}}{6} = k\sqrt{2} \circ \Box \Box \Box \Box$$

$$\therefore k = \frac{1}{6}$$

- 분수 $\frac{\sqrt{2}}{3-2\sqrt{2}}$ 의 분모를 유리화 하면? 6.
 - ① $3 + 2\sqrt{2}$ ② $-3\sqrt{2} + 4$ ③ $-3\sqrt{2} 4$
 - (4) $3\sqrt{2} + 4$ (5) $3\sqrt{2} 4$

$$\frac{\sqrt{2}(3+2\sqrt{2})}{(3-2\sqrt{2})(3+2\sqrt{2})} = 3\sqrt{2}+4$$

7. $x^2 - 10x + A = (x + 5)(x - B)$ 일 때, A, B 의 값을 각각 구하여라.

답:답:

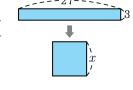
▷ 정답: A = -75▷ 정답: B = 15

. . .

 $x^2 - 10x - 75 = x^2 + (5 - B)x - 5B$

 $5 - B = 10, \therefore B = 15$ $\therefore A = -5B = -75$

- 8. (x-3y)(3x-ay)를 전개하였을 때, xy의 계수가 -14이면, y^2 의 계수 를 구하여라.
 - ▶ 답:


➢ 정답: 15

해설

(준식) = $3x^2 - axy - 9xy + 3ay^2$ $-a - 9 = -14 \qquad \therefore a = 5$

 $\therefore 3a = 3 \times 5 = 15$

다음 그림과 같이 가로가 27이고 세로가 3인 직사각형과 넓이가 같은 정사각형을 그리려고 한다. 이 정사각형의 한 변 x의 길이를 구하여라.

 답:

 ▷ 정답: x = 9

직사각형의 넓이를 구해보면 $27 \times 3 = 81$ 이 된다. 직사각형과

해설

넓이가 같은 정사각형을 만들려면 $x^2 = 81$ 을 만족하여야 한다. 즉, 81의 제곱근을 구하면 되는 것이다. 81의 제곱근은 ± 9 이다. 그러므로 정사각형 한 변 x의 길이는 9 가 된다.

- . 다음 중 제곱근을 나타낼 때, 근호를 사용하여 나타내야만 하는 것을 모두 고르면?
 - $\sqrt{36}$ ② 169 ③ 3.9 ④ $\frac{98}{2}$ 0.4

 $(\sqrt{36}$ 의 제곱근)= 6 의 제곱근은 $\pm\sqrt{6}$ ② $169=13^2$ 이므로 169 의 제곱근은 ±13

- $3.\dot{9} = \frac{36}{9} = 4$ 이므로 $3.\dot{9}$ 의 제곱근은 ± 2 ④ $\frac{98}{2} = 49$ 이므로 $\frac{98}{2}$ 의 제곱근은 ± 7
- ⑤ 0.4 의 제곱근은 ± √0.4

11. $\sqrt{43-a} = 4$ 를 만족하는 a 의 값을 구하여라.

답:

해설

▷ 정답: a = 27

 $\sqrt{43-a} = \sqrt{16}, 43-a = 16, a = 27$

12. -1 < a < 2 일 때, 다음 식을 간단히 하면?

$$\sqrt{(a-2)^2} - \sqrt{(a+1)^2}$$

④ 3 ⑤ 1

① a-3

- ② -2a-3
- 3 2a + 1

$$\begin{split} & \sqrt{(a-2)^2} - \sqrt{(a+1)^2} \\ & = -(a-2) - (a+1) \ (\because \ a-2 < 0, \ a+1 > 0) \end{split}$$

- = -a + 2 a 1
- = -2a + 1

13. $5 < \sqrt{4x^3} < 10$ 을 만족하는 자연수 x 의 값을 구하여라.

▶ 답:

 ▷ 정답:
 x = 2

해설

 $25 < 4x^3 < 100$ 이므로 $6.25 < x^3 < 25$ $2^3 = 8, 3^3 = 27$

 $\therefore x = 2$

14. 다음 중 순환하지 않는 무한소수가 되는 것은 모두 몇 개인지 구하여라.

 $\sqrt{0.9}$, $2\sqrt{6}$, $\sqrt{0.04}$, $\sqrt{\frac{2}{4}}$, $\sqrt{9} - \sqrt{3}$

 답:
 개

 ▷ 정답:
 3개

_

순환하지 않는 무한소수는 무리수이다.

 $\sqrt{0.9}=\sqrt{\frac{9}{9}}=1$, $\sqrt{0.04}=0.2$ 유리수이다. 따라서 $2\sqrt{6}$, $\sqrt{\frac{2}{4}}$, $\sqrt{9}-\sqrt{3}$ 이 무리수이다.

- 15. 정사각형 ABCD 가 다음 그림 과 같을 때, 수직선 위의 점 P, Q 에 대응하는 좌표를 각각 p, q 라 할 때, p q 의 값이 a √b 이 다. a+b 의 값을 구하시오. (단, 모눈 한 칸은 한 변의 길이가 1 인 정사각형이다.)
 - **□** 답: **□** 정답: a+b=3

 \square ABCD 의 면적이 5 이므로 \square ABCD 한 변의 길이가 $\sqrt{5}$ 이다.

 $p = -1 - \sqrt{5}$, $q = -1 + \sqrt{5}$ $\therefore p - q = -1 - \sqrt{5} + 1 - \sqrt{5} = -2\sqrt{5}$ 이므로 a + b = 3이다.

- 16. 다음 두 수의 대소 관계를 바르게 나타낸 것은?
 - ① $3 \sqrt{3} < 5 \sqrt{5}$ ② $\sqrt{0.3} < 0.3$ ③ $4\sqrt{3} 1 < 3\sqrt{5} 1$ ④ $5 < \sqrt{3} + 3$

① $-2 < -\sqrt{3} < -1$ 이므로 $1 < 3 - \sqrt{3} < 2$

 $-3 < -\sqrt{5} < -2$ 이므로 $2 < 5 - \sqrt{5} < 3$ $\therefore 3 - \sqrt{3} < 5 - \sqrt{5}$ 나머지의 부등호의 바른 방향은 모두 반대 방향으로 바뀐다.

17. $\sqrt{0.24} \div \sqrt{0.06} \div \sqrt{0.04}$ 를 간단히 하면?

① 6 ② 8 ③ 10 ④ 12 ⑤ 14

해설 $\sqrt{\frac{24}{100}} \times \sqrt{\frac{100}{6}} \times \sqrt{\frac{100}{4}} = \sqrt{100} = 10$

18. $\frac{3\sqrt{2}}{\sqrt{6}} = \sqrt{a}$, $\frac{3}{5\sqrt{3}} = \sqrt{b}$ 일 때, 유리수 a, b 의 $a \div b$ 의 값을 구하여 라.

▶ 답:

ightharpoonup 정답: $a \div b = 25$

 $\frac{3\sqrt{2}}{\sqrt{6}} = \sqrt{\frac{3^2 \times 2}{6}} = \sqrt{3}$ $\therefore a = 3$ $\frac{3}{5\sqrt{3}} = \sqrt{\frac{3^2}{5^2 \times 3}} = \sqrt{\frac{3}{25}}$ $\therefore b = \frac{3}{25}$ $\therefore a \div b = 3 \times \frac{25}{3} = 25$

 ${f 19.}$ $\sqrt{2}=a, \ \sqrt{6}=b$ 일 때, $\sqrt{0.96}+\sqrt{200}$ 을 $a,\ b$ 를 이용하여 나타내

①
$$5a + \frac{1}{10}$$

①
$$5a + \frac{1}{10}b$$
 ② $5a + \frac{1}{20}b$ ③ $10a + \frac{2}{5}b$ ④ $15a + \frac{1}{20}b$

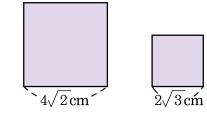
$$4) 10a +$$

$$\sqrt{0.96} = \sqrt{\frac{96}{100}} = \frac{\sqrt{2^4 \times 6}}{10} = \frac{4\sqrt{6}}{10} = \frac{2}{5}b$$

$$\sqrt{200} = \sqrt{2 \times 100} = 10\sqrt{2} = 10a$$

$$\therefore \sqrt{0.96} + \sqrt{200} = 10a + \frac{2}{5}b$$

..
$$\sqrt{0.90 + \sqrt{200}} = 10a + \frac{1}{5}b$$


20. $2\sqrt{133} \div \frac{1}{\sqrt{7}} \div \frac{1}{\sqrt{19}}$ 를 간단히 하여라.

답:

▷ 정답: 266

 $2\sqrt{133} \div \frac{1}{\sqrt{7}} \div \frac{1}{\sqrt{19}} = 2\sqrt{133} \times \sqrt{7} \times \sqrt{19}$ $= 2\sqrt{133 \times 7 \times 19}$ $= 2\sqrt{133^2}$ = 266

21. 다음 그림과 같이 한 변의 길이가 각각 $4\sqrt{2}$ cm, $2\sqrt{3}$ cm 인 색종이가 있다. 이것을 적당히 오려 붙여서 이것과 넓이가 같은 정사각형 모양으로 붙이려고 한다. 정사각형의 한 변의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

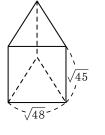
ightharpoonup 정답: $2\sqrt{11}$ $\underline{\mathrm{cm}}$

답:

넓이의 합은 $\left(4\sqrt{2}\right)^2+\left(2\sqrt{3}\right)^2=32+12=44$ 이다. 따라서 정사각형의 한 변의 길이를 $x\,\mathrm{cm}$ 라고 할 때, $x^2=44$ 이므로 $x=2\sqrt{11}\,\mathrm{cm}$ 이다.

- **22.** $\sqrt{192} \sqrt{54} \sqrt{108} + \sqrt{24}$ 를 $a\sqrt{3} + b\sqrt{6}$ 의 꼴로 고칠 때, a-b 의 값을 구하면?
 - ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

해설


$$\sqrt{192} - \sqrt{54} - \sqrt{108} + \sqrt{24}$$
$$= 8\sqrt{3} - 3\sqrt{6} - 6\sqrt{3} + 2\sqrt{6}$$

$$= 2\sqrt{3} - \sqrt{6}$$

- $\therefore a = 2, b = -1$
- $\therefore a b = 2 (-1) = 3$

23. 다음 정삼각기둥의 모서리의 길이의 합은?

- ① $12\sqrt{3} + 5\sqrt{5}$
- ② $12\sqrt{3} + 9\sqrt{5}$ $4 \sqrt{3} + 9\sqrt{5}$
- ③ $24\sqrt{3} + 5\sqrt{5}$
- $\bigcirc 24\sqrt{3} + 18\sqrt{5}$

해설

정삼각기둥의 모서리의 길이의 합은 $\sqrt{48} \times 6 + \sqrt{45} \times 3 = 24\sqrt{3} + 9\sqrt{5}$ 이다.

24. 제곱근의 값이 각각 $\sqrt{a}=7.563$, $\sqrt{b}=7.436$ 일 때, 다음 제곱근표를 이용하여 a-b 의 값을 구하여라.

	수	0	1	2	3
•	55	7.416	7.423	7.430	7.436
	56	7.483	7.490	7.497	7.503
	57	7.550	7.556	7.563	7.570
•	58	7.616	7.622	7.629	7.635
,					

▷ 정답: a - b = 1.9

▶ 답:

a = 57.2, b = 55.3 $\therefore a - b = 57.2 - 55.3 = 1.9$

- **25.** 제곱근표에서 $\sqrt{4.15} = 2.037$, $\sqrt{41.5} = 6.442$ 일 때, 제곱근의 값을 틀리게 구한 것은?

 - ① $\sqrt{4150} = 64.42$ ② $\sqrt{4150000} = 2037$
 - \bigcirc $\sqrt{0.0000415} = 0.006442$
 - $\boxed{3}$ $\sqrt{41500} = 644.2$ $\boxed{4}$ $\sqrt{0.0415} = 0.2037$

① $\sqrt{4150} = \sqrt{41.5 \times 100}$ $= 10\sqrt{41.5} = 10 \times 6.442$ = 64.42 $= 1000\sqrt{4.15} = 1000 \times 2.037$ =2037 $= 100\sqrt{4.15} = 203.7$ $= \sqrt{\frac{4.15}{100}}$ $= \frac{\sqrt{4.15}}{10} = \frac{2.037}{10}$ = 0.2037 $= \sqrt{\frac{41.5}{1000000}}$ $= \frac{\sqrt{41.5}}{1000} = \frac{6.442}{1000}$ = 0.006442

26. $7 + \sqrt{3}$ 의 정수 부분을 a, 소수 부분을 b 라고 할 때, a, b 를 차례대로 구하여라.

▶ 답:

▶ 답:

▷ 정답: 8

해설

> 정답: -1 + √3

 $\sqrt{3} = 1. \times \times \times$ 이므로 $7 + \sqrt{3} = 8. \times \times \times$ 이다.

 $\therefore \ a = 8, \ b = 7 + \sqrt{3} - 8 = -1 + \sqrt{3}$

- **27.** 두 다항식 $x^2(x-y)$ 와 x(x-y)(x+y) 의 공통인 인수를 구하면?
- ① x^2 ② y ③ (x-y)(x+y)
- $\textcircled{3} x(x-y) \qquad \qquad \textcircled{5} x+y$

해설

 $x^2(x-y)$ 과 x(x-y)(x+y) 의 공통인 인수는 x(x-y) 이다.

28. 두 식 $(x-3)^2 - 2(x-3) - 35$ 와 $2x^2 + x - 6$ 의 공통인 인수를 구하면?

① x + 34 2x - 3

② x + 2 ③ 3x - 13

⑤ x - 10

해설

x-3=t로 치환하면 $t^2 - 2t - 35 = (t+5)(t-7)$ = (x - 3 - 7)(x - 3 + 5)= (x-10)(x+2)한편, $2x^2 + x - 6 = (2x - 3)(x + 2)$

따라서 공통인 인수는 x+2

- **29.** $6x^2 + Ax 15$ 는 두 개의 일차식으로 인수분해가 된다. 이 때, A 가 될 수 <u>없는</u> 것은?
 - ① 1

- ②3 3 -9 ④ 9 ⑤ 13

① $6x^2 + x - 15 = (2x - 3)(3x + 5)$

해설

- ② $6x^2 + 3x 15$
- $3 6x^2 9x 15 = 3(x+1)(2x-5)$
- $4 6x^2 + 9x 15 = 3(x-1)(2x+5)$

30. 다음 식을 인수분해하면?

$$x^2 - y^2 + 8x + 4y + 12$$

- ③ (x+y+2)(x+y+6) ④ (x+y-2)(x-y-6)
- ① (x+y+3)(x-y+4) ② (x+y+4)(x-y+3)
- (3)(x+y+2)(x-y+6)

 $x^2 + 8x - (y^2 - 4y - 12)$ $= x^2 + 8x - (y+2)(y-6)$ = (x + y + 2)(x - y + 6)

31. $\frac{28^2 - 11^2}{25 \times 17 - 17 \times 12}$ 의 값을 계산하면?

① 12 ② 9 ③ 6 ④ 3 ⑤ 1

 $\frac{(28+11)(28-11)}{(25-12)\times 17} = \frac{39\times 17}{13\times 17} = 3$

32. x 의 값의 범위가 $\{x \mid 0 \le x \le 4\}$ 이고 , x 는 정수일 때, 이차방정식 $x^2 - 5x + 6 = 0$ 의 해를 a, b 라 하고, $x^2 - 3x + 2 = 0$ 의 해를 m, n이라 할 때, ab - (m + n) 을 구하면?

①3

- ② 6 ③ 8 ④ 9 ⑤ 12

해설 x 에 $0,\ 1,\ 2,\ 3,\ 4$ 를 대입하여 성립하는 것을 찾는다.

 $x^2 - 5x + 6 = 0$ 에 대입하여 성립하는 것은 2, 3 이므로 ab = 6이다. $x^2 - 3x + 2 = 0$ 에 대입하여 성립하는 것은 1, 2 이므로 m+n=3이다. 따라서 ab - (m+n) = 6 - 3 = 3 이다.

33. 이차방정식 $ax^2 - (a-3)x + 2 - a^2 = 0$ 의 한 근이 -1 일 때, a 의 값을 구하여라.

▶ 답:

➢ 정답: 1

해설

주어진 식에 x = -1을 대입하면

 $\begin{vmatrix} a + (a-3) + 2 - a^2 = 0 \\ a^2 - 2a + 1 = 0 \\ (a-1)^2 = 0 \end{vmatrix}$

 $(a-1)^2 = 0$ $\therefore a = 1$

34. $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ 일 때, $\begin{vmatrix} x-2 & x+3 \\ 3 & x \end{vmatrix} = -8x + 31$ 을 만족하는 x 의 값들의 합을 구하면?

① -1 ② -2 ③ -3 ④ -4 ⑤ -5

 $\begin{vmatrix} x-2 & x+3 \\ 3 & x \end{vmatrix} = -8x + 31$ x(x-2) - 3(x+3) = -8x + 31 $x^2 - 2x - 3x - 9 = -8x + 31$ $x^2 + 3x - 40 = 0$ (x-5)(x+8) = 0따라서 x = 5 또는 x = -8 이다.
따라서 x = 3 값들의 합은 x = -3 이다.

35. 이차방정식 $(a^2-1)x^2+(a+3)x+2(3a+1)=0$ 의 한 근이 -2일 때, 다른 한 근을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{5}{3}$

해설

x = -2 를 대입하면 $4(a^2 - 1) - 2(a + 3) + 2(3a + 1) = 0$ $4a^2 - 4 - 2a - 6 + 6a + 2 = 0$ $4a^2 + 4a - 8 = 0$ $a^2 + a - 2 = 0$ (a-1)(a+2) = 0 $\therefore a = -2 (a^2 - 1 \neq 0)$ 으로 $a \neq 1$ a = -2 를 대입하면 $3x^2 + x - 10 = 0$ (3x - 5)(x + 2) = 0 $\therefore x = \frac{5}{3}$ 또는 x = -2따라서 다른 한 근은 $\frac{5}{3}$ 이다.

36. 두 이차방정식 $2x^2 - ax + 2 = 0$, $x^2 - 3x + b = 0$ 의 공통인 해가 2일 때, ab의 값은?

① -25 ② -10 ③ 1 ④ 10 ⑤ 25

주어진 식에 x 대신 2를 대입하면 8-2a+2=0 $\therefore a=5$ 4-6+b=0 $\therefore b=2$ $\therefore ab=5\times 2=10$

해설

37. 이차방정식 $16x^2-24x+a=0$ 이 중근을 가질 때, 이차방정식 $x^2-ax+20=0$ 을 풀어라. (단, a>0)

답:

▶ 답:

> 정답: *x* = 4

> 정답: *x* = 5

 $16x^{2} - 24x + a = 0$ $\left(\frac{-24}{16 \times 2}\right)^{2} = \frac{a}{16}$ $\frac{a}{16} = \frac{9}{16}$

 $x^{2} - 9x + 20 = 0$ (x - 4)(x - 5) = 0∴ $x = 4 \, \text{\mathcal{L}} \, = 5$

 $\therefore \ a=9$

 $oldsymbol{38}$. 이차방정식 $2(x+k)^2=m$ 의 근이 $x=4\pm\sqrt{5}$ 이다. 이때, $(k+m)^2$ 의 값을 구하여라.(단, k, m은 유리수)

▶ 답: ▷ 정답: 36

$$2(x+k)^{2} = m, (x+k)^{2} = \frac{m}{2}$$

$$x = -k \pm \sqrt{\frac{m}{2}} = 4 \pm \sqrt{5}$$

$$\therefore k = -4, m = 10$$

$$\therefore (k+m)^{2} = (-4+10)^{2} = 36$$

$$\therefore k = -4, m = 10$$

$$\therefore (k + m)^2 = (4 + 10)$$

39. 이차방정식 (x-3)(2x-5)=5x-4 를 $(x-p)^2=k$ 의 꼴로 나타낼 때, k-p 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{5}{2}$

해설

(x-3)(2x-5) = 5x - 4 $2x^2 - 11x + 15 - 5x + 4 = 0$ $2x^2 - 16x + 19 = 0$ $2(x^{2} - 8x + 16) = -19 + 32$ $2(x - 4)^{2} = 13$

 $(x-4)^{2} = \frac{13}{2}$ $\therefore k = \frac{13}{2}, p = 4$ $\therefore k - p = \frac{13}{2} - 4 = \frac{5}{2}$

40. 이차방정식 $a(x-p)^2=q$ 에서 aq<0일 때, 근의 개수를 구하여라. (단, 근이 2개이면 2, 1개이면 1, 근이 없으면 0이라고 써라.)

▶ 답:

▷ 정답: 0

 $(x-p)^2 = \frac{q}{a}, x-p = \pm \sqrt{\frac{q}{a}}$ $\therefore x = p \pm \sqrt{\frac{q}{a}}$ $aq < 0 \circ] 므로 \frac{q}{a} < 0$ $\therefore 0 \%$

- **41.** 다음 중 옳은 것을 모두 고르면?

 - ① $\frac{25}{36}$ 의 제곱근은 $\frac{5}{6}$ 이다. ② 음이 아닌 수의 제곱근은 양수와 음수 2 개가 있다. ③ 제곱근 $\frac{9}{16}$ 는 $\frac{3}{4}$ 이다. ④ 제곱근 7 은 $\sqrt{7}$ 이다.

 - ⑤ 3.9 의 제곱근은 1 개이다.

- ① $\frac{25}{36}$ 의 제곱근은 $\pm \frac{5}{6}$ 이다. ② 0 의 제곱근은 0 이다.
- ⑤ 3.9 의 제곱근은 2 개이다.

42. $\sqrt{19+x}$ 와 $\sqrt{120x}$ 가 모두 자연수가 되도록 하는 가장 작은 자연수 x를 구하여라.

답:

▷ 정답: 30

 $\sqrt{19+x}$ 가 자연수가 되려면 $19+x=25,36,49,\cdots$ $\therefore x=$

⑤, ⓒ에서 가장 작은 자연수 *x*는 30 이다.

- **43.** 5x+y=15 일 때, $\sqrt{2x+y}$ 가 자연수가 되게 만드는 가장 작은 자연수 x는?
 - ① 1 ② 2 ③ 4 ④ 7 ⑤ 9

 $5x + y = 15 \implies y = 15 - 5x$ $\sqrt{2x + y} = \sqrt{2x + 15 - 5x} = \sqrt{15 - 3x}$

| V2x + y = V2x + 15 = 5x = V15 = 5x | | x 가 가장 작은 자연수가 되려면 근호 안의 수는 15 미만의 가장

큰 제곱수가 되어야 하므로 9가 되어야 한다. $\sqrt{15-3x}=\sqrt{9}$

15 - 3x = 9 $\therefore x = 2$

해설

해설 $a = \frac{1}{2} 라고 하면$ ① $\frac{1}{2}$ ② $\frac{1}{8}$ ③ $\sqrt{\frac{1}{2}}$ ④ 8
⑤ $\sqrt{2}$

45. 다음 중 그 결과가 반드시 무리수인 것은?

- ① (무리수)+ (무리수)
- ② (무리수)- (무리수)
- ③ (유리수)x (무리수) ⑤ (무리수)- (유리수)
- ④ (무리수)÷ (무리수)

- ① $\sqrt{2} + (-\sqrt{2}) = 0$ (유리수) ② $\sqrt{2} - \sqrt{2} = 0$ (유리수) ③ $0 \times \sqrt{2} = 0$ (유리수)
- ④ $\sqrt{2} \div \sqrt{2} = 1$ (유리수)

46. \sqrt{x} 이하의 자연수의 개수를 N(x) 라고 하면 $2<\sqrt{5}<3$ 이므로 N(5)=2 이다. 이 때, $N(1)+N(2)+N(3)+\cdots+N(10)$ 의 값을 구하여라.

▷ 정답: 19

▶ 답:

00. 1

해설

 $\sqrt{1} = 1$, $\sqrt{4} = 2$, $\sqrt{9} = 3$ 이므로 N(1) = N(2) = N(3) = 1

 $N(4) = N(5) = \cdots = N(8) = 2$

N(9) = N(10) = 3 $\therefore N(1) + N(2) + N(3) + \dots + N(10) = 1 \times 3 + 2 \times 5 + 3 \times 2 = 19$

47. $\frac{k(2\sqrt{2}-\sqrt{3})}{\sqrt{3}}-2\sqrt{3}+2\sqrt{3}(1-\sqrt{2})$ 가 유리수가 되도록 하는 유리수 k 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

해설 $\frac{k(2\sqrt{2} - \sqrt{3})}{\sqrt{3}} - 2\sqrt{3} + 2\sqrt{3}(1 - \sqrt{2})$ $= \frac{k(2\sqrt{2} - \sqrt{3})\sqrt{3}}{3} - 2\sqrt{3} + 2\sqrt{3} - 2\sqrt{6}$ $= \frac{2k\sqrt{6}}{3} - k - 2\sqrt{6}$ $= \left(\frac{2}{3}k - 2\right)\sqrt{6} - k$ 값이 유리수가 되어야 하므로 $\frac{2}{3}k - 2 = 0$ $\therefore k = 3$

48. 다음 식이 성립하도록 양수 A, B, C 에 알맞은 수를 순서대로 바르게 나열한 것은?

(1)
$$a^2 + 8a + A = (a+4)^2$$

(2) $x^2 + Bx + 9 = (x+C)^2$

16, 6, 3 ④ 8, 3, 6
⑤ 6, 8, 3

② 8, 6, 3 ③ 16, 3, 6

해설

 $a^{2} + 8a + A = (a + 4)^{2} = a^{2} + 8a + 16, A = 16$ $x^{2} + Bx + 9 = (x + C)^{2} = x^{2} + 2Cx + C^{2},$ $C^{2} = 9, C = \pm 3, B = 2C, B = \pm 6$

 $\therefore A = 16, \ B = 6, \ C = 3 \ (\because B, \ C \stackrel{\vdash}{\vdash} \stackrel{\circ}{\circ} \stackrel{r}{\vdash})$

49. $x=\sqrt{3}+\sqrt{2}$, $y=\sqrt{3}-\sqrt{2}$ 일 때, $(x^n-y^n)^2-(x^n+y^n)^2$ 의 값을 구하여라. (단, *n* 은 양의 정수)

▶ 답:

▷ 정답: -4

해설

 $(x^n - y^n)^2 - (x^n + y^n)^2$ $= (x^{n} - y^{n} + x^{n} + y^{n})(x^{n} - y^{n} - x^{n} - y^{n})$ $=2x^n\times(-2y^n)=-4(xy)^n$ $xy = (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 1$ $\therefore -4(xy)^n = -4$

50.
$$a = \frac{2 - \sqrt{3}}{2}$$
, $b = \frac{2 + \sqrt{3}}{2}$ 일 때, $a^2 + 2ab + b^2$ 의 값은?

① 2 ② 3 ③4 ④ 5 ⑤ 6

해설 $a^2 + 2ab + b^2 = (a+b)^2$

$$a^{2} + 2ab + b^{2} = (a+b)^{2}$$

$$= \left(\frac{2-\sqrt{3}}{2} + \frac{2+\sqrt{3}}{2}\right)^{2}$$

$$= \left(\frac{4}{2}\right)^{2} = 4$$

$$=\left(\frac{1}{2}\right)$$