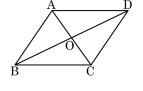

1. 다음은 XOY 의 이등분선 위의 한 점 P 라 하고 점 P 에서 $\overline{OX}, \overline{OY}$ 에 내린 수선의 발을 각각 A, B 라고 할 때, $\triangle AOP \equiv \triangle BOP$ 임을 나타내기 위해서 이용한 합동조건은?

① SSS 합동 ④ RHA 합동⑤ RHS 합동

② SAS 합동


③ AAA 합동

해설

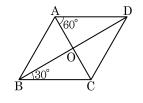
 $\angle AOP = \angle BOP$, \overline{OP} (공통), $\angle OAP = \angle OBP = 90^\circ$ 이므로

 $\triangle AOP \equiv \triangle BOP$ ∴ RHA 합동

다음 그림 □ABCD 는 평행사변형이라고 2. 할 때, 직사각형이 되기 위한 조건을 나타낸 것은?

- ① $\overline{AB} = 8cm$, $\overline{CD} = 8cm$ ② $\angle A = \angle C = 80^{\circ}$

- $\bigcirc \overline{AO} = 5 \text{cm}, \ \overline{BO} = 5 \text{cm}, \ \overline{CO} = 5 \text{cm}, \ \overline{DO} = 5 \text{cm}$ \bigcirc $\angle A + \angle B = 180^{\circ}$


한 내각이 직각이거나 두 대각선의 길이가 같은 평행사변형은

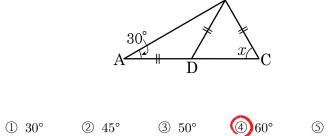
직사각형이 된다. 따라서 $\overline{AO}=\overline{BO}=\overline{CO}=\overline{DO}$ 이거나 $\angle A=90$ ° 이면 된다.

- **3.** 마름모의 성질이 <u>아닌</u> 것은?
 - ① 두 대각선의 길이가 같다.② 이웃하는 두 변의 길이가 같다.
 - ③ 대각선에 의해 대각이 이등분된다.
 - ④ 두 대각선이 서로 다른 것을 수직이등분한다.
 - ⑤ 대각의 크기가 같다.

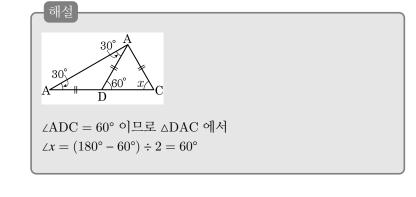
두 대각선의 길이는 같지 않다.

평행사변형ABCD 에서 두 대각선의 교점을 4. O 라 하고, $\angle \mathrm{DBC} = 30\,^{\circ}$, $\angle \mathrm{CAD} = 60\,^{\circ}$ 일 때, ∠BDC 의 크기는?

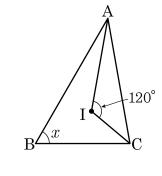
① 10° ② 20°


③30° 40°

⑤ 50°


해설 $\angle DAC = \angle ACB()$ 각)

 $\therefore \angle BOC = 90^{\circ}, \overline{AC} \bot \overline{BD}$ □ABCD는 마름모이다.


5. 다음 그림에서 $\angle x$ 의 크기를 바르게 구한 것은?

① 30° ② 45° ③ 50° ④ 60° ⑤ 65°

6. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때 $\angle x$ 의 크기를 구하여라.

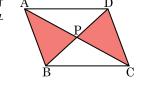
답:

➢ 정답: 60°

 $\frac{x}{2} + 90^{\circ} = 120^{\circ},$ $\frac{x}{2} = 30^{\circ}$ $\therefore x = 60^{\circ}$

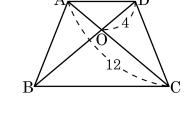
7. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $96cm^2$ 일 때, 내접원의 반지름의 길이를 구하여라.

 $\underline{\mathrm{cm}}$


▷ 정답: 4 <u>cm</u>

내접원의 중심을 I라고 하면, \triangle ABI, \triangle IBC, \triangle ICA 의 높이는

▶ 답:

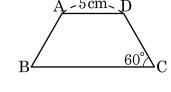

내접원의 반지름과 같다. 내접원의 반지름을 x 라 하면 $\frac{1}{2}(12 +$ 16 + 20)x = 96cm² $\therefore x = 4 \text{cm}$

- 다음 그림에서 평행사변형 ABCD 의 넓이가 $40 {
 m cm}^2$ 일 때, $\Delta {
 m ABP} + \Delta {
 m DPC}$ 의 넓이를 구 8. 하면?
 - $2 15 cm^2$ $\fbox{3}20 cm^2$
 - $4 25 \text{cm}^2$ $\odot 30 \mathrm{cm}^2$

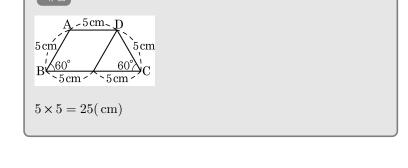
$$\triangle ABP + \triangle DPC = \Box ABCD \times \frac{1}{2}$$

= $40 \times \frac{1}{2} = 20 \text{ (cm}^2\text{)}$

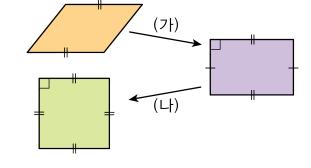
9. 다음 그림에서 $\square ABCD$ 가 등변사다리꼴이고 $\overline{AC}=12,\ \overline{DO}=4$ 일 때, \overline{BO} 의 길이를 구하여라.


▶ 답:

▷ 정답: 8


등변사다리꼴은 두 대각선의 길이가 서로 같으므로 $\overline{
m BD}=\overline{
m AC}=$

12이다. ∴ BO = 12 - 4 = 8이다.


10. 다음 그림에서 □ABCD 는 $\overline{AB}=\overline{AD}$ 인 등변사다리꼴이다. $\overline{AD}=5\,\mathrm{cm}$, $2\mathrm{C}=60^\circ$ 일 때, □ABCD 의 둘레의 길이를 구하여라.

답:▷ 정답: 25 cm

11. 다음 그림을 보고 (개, (내) 에 들어갈 조건을 바르게 나타낸 것은?

(내: 한 내각의 크기가 90°이다.

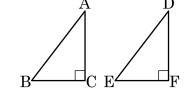
① (개): 두 대각선이 서로 수직 이등분한다.

- ② (개: 한 내각의 크기가 90°이하이다.
- (내): 네 변의 길이가 모두 같다.
 ③ (개): 한 내각의 크기가 90°이다.
 - (내): 두 대각선이 서로 직교한다.
- ④ (개 : 두 대각선이 서로 직교한다.(내) : 두 대각선의 길이가 같다.
- ⑤ (개: 두 대각선의 길이가 같다. (내: 한 내각의 크기가 90°이다.

평행사변형이 직사각형이 되려면 한 내각의 크기가 90°이거나

두 대각선의 길이가 같으면 된다. 직사각형이 정사각형이 되려면 두 대각선이 서로 직교하거나 네 변의 길이가 모두 같으면 된다.

12. 다음 조건에 알맞은 사각형을 모두 구하면?


대각선이 서로 다른 것을 이등분한다.

- ① 평행사변형, 등변사다리꼴, 마름모, 정사각형② 등변사다리꼴, 평행사변형, 마름모
- ③ 평행사변형, 직사각형, 마름모, 정사각형
- ④ 등변사다리꼴, 직사각형, 정사각형
- ⑤ 마름모, 정사각형

평행사변형은 두 대각선이 서로 다른 것을 이등분한다. 직사

해설

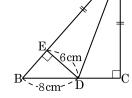
각형, 마름모, 정사각형은 평행사변형의 성질을 가지므로 위의 성질도 가진다. 13. 다음은 \triangle ABC와 \triangle DEF가 RHS 합동임을 보이려는 과정이다. 보이기 위해 필요한 것들로 옳은 것은?

\therefore $\triangle ABC \equiv \triangle DEF (RHS 합동)$

 \triangle ABC 와 \triangle DEF 에서

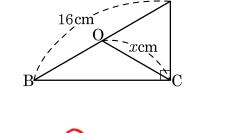
② $\angle B = \angle E$, $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$

① $\angle A = \angle B$, $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$


- $\bigcirc 3 \angle B = \angle E, \overline{AC} = \overline{DF}, \overline{BC} = \overline{EF}$
- 4 $\angle C = \angle F = 90^{\circ}, \overline{AB} = \overline{DE}, \overline{BC} = \overline{EF}$

두 직각삼각형, 빗변의 길이와 다른 한 변의 길이가 같아야 하므 (두 직각삼각형이다.) \Rightarrow $\angle C = \angle F = 90^{\circ}$ (빗변의 길이가 같다) $\Rightarrow \overline{AB} = \overline{DE}$ (다른 한 변의 길이가 같다.) $\Rightarrow \overline{\mathrm{BC}} = \overline{\mathrm{EF}}$ 또는 $\overline{\mathrm{AC}} = \overline{\mathrm{DF}}$ 따라서 필요한 것은 $\angle C = \angle F = 90^{\circ}$, $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$ 또는 $\angle C = \angle F = 90^{\circ}$, $\overline{AB} = \overline{DE}, \ \overline{AC} = \overline{DF}$ 이다.

- 14. 다음 그림과 같이 $\angle C = 90$ ° 인 직각삼각형 ABC 에서 $\overline{AE}=\overline{AC},\;\overline{AB}\bot\overline{DE}$ 일 때, \overline{DC} 의 길이는?
 - \bigcirc 3 cm $4 8 \, \mathrm{cm}$ \Im 10 cm


해설

- ②6 cm
- \Im 7 cm

 $\triangle AED \equiv \triangle ACD \text{ (RHS 합동)}$ $\therefore \overline{ED} = \overline{CD} = 6 \text{ (cm)}$

15. 다음 그림에서 점 O는 직각삼각형 ABC의 외심이다. $\overline{\rm AB}=16{
m cm}$ 일 때, x의 길이는?

② 6cm

3 8cm

4 10cm

⑤ 12cm

점 O가 △ABC의 외심이므로

① 4cm

 $\overline{OA} = \overline{OB} = \overline{OC}$ 이다. $\therefore x = \overline{OC} = 8(\text{cm})$