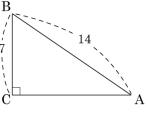
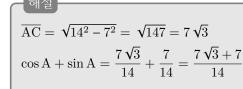
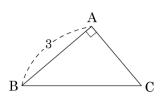

1. 다음 그림과 같이 \overline{AB} 가 지름인 반원 O 에서 $\frac{\tan B}{\tan A}$ 의 값을 구하여라.




$$ightharpoonup$$
 정답: $\frac{1}{3}$


다음의 직각삼각형 ABC 에서
$$\cos A + \sin A$$
 의 값을 바르게 구한 것은?
$$6\sqrt{3} + 5 \qquad 6\sqrt{3} + 7$$

①
$$\frac{6\sqrt{3}+5}{\frac{14}{7\sqrt{3}+5}}$$

③ $\frac{7\sqrt{3}+5}{8\sqrt{3}+5}$

3. 다음 그림과 같은 직각삼각형 ABC 에서 $\cos C = \frac{1}{2}$ 이고 \overline{AB} 가 3 일 때, $\triangle ABC$ 의 둘레의 길이는?

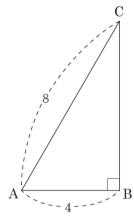
 $3(2-\sqrt{3})$

$$(1)$$
 $3(1+\sqrt{3})$

 $4 3(2+\sqrt{5})$

②
$$3(2+\sqrt{3})$$

⑤
$$3(3-\sqrt{5})$$

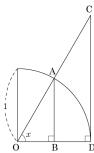

$$\cos C = \frac{\overline{AC}}{\overline{\overline{BC}}} = \frac{1}{2}$$
이므로 $\sin C = \frac{\sqrt{3}}{2}$, $\tan C = \sqrt{3}$ 이다.

$$3 = \overline{AC} \tan C = \overline{AC} \times \sqrt{3} = 3, \ \overline{AC} = \frac{3}{\sqrt{3}} = \sqrt{3} \ \text{old},$$

피타고라스 정리에 의해 $\overline{\mathrm{BC}}=\sqrt{3^2+(\sqrt{3})^2}=2\,\sqrt{3}$ 이다.

따라서 삼각형 ABC 의 둘레의 길이는 $3+\sqrt{3}+2\sqrt{3}=3+3\sqrt{3}=3(1+\sqrt{3})$ 이다.

다음 그림에서 $an A \sin A$ 의 값을 구하여라.



$$ightharpoonup$$
 정답: $\frac{3}{2}$

$$\overline{BC} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 4\sqrt{3}$$
$$\tan A \sin A = \frac{4\sqrt{3}}{4} \times \frac{4\sqrt{3}}{8} = \sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{3}{2}$$

선분은?

5.

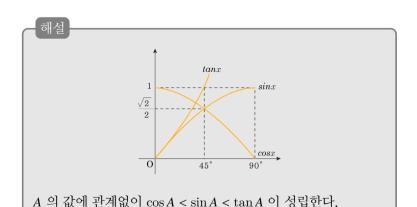
그림과 같이 반지름의 길이가 1 인 사분원에서 $\tan x$ 를 나타내는

$$\overline{\text{OD}} = 1$$
, $\triangle \text{COD}$ 에서 $\tan x = \frac{\overline{\text{CD}}}{\overline{\text{OD}}} = \overline{\text{CD}}$

 $\therefore \tan x = \overline{\mathrm{CD}}$

해설

6. x = 45 °일 때, $\sin x$, $\cos x$, $\tan x$ 의 대소를 비교하여라.


$$\triangleright$$
 정답: $\sin x = \cos x < \tan x$

$$\sin 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \cos 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \tan 45^{\circ} = 1$$

$$\therefore \quad \sin x = \cos x < \tan x$$

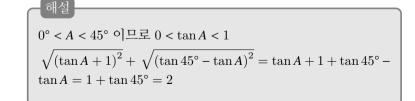
7. 45° ≤ *A* < 90° 일 때, 다음 설명 중 옳은 것은?

- ① A 의 값이 커질수록 $\sin A$, $\cos A$, $\tan A$ 의 값도 모두 증가한다.
- ② A 의 값이 커질수록 $\cos A$ 의 값만 증가하고, $\sin A$, $\tan A$ 의 값은 감소한다.
- ③ cos A 의 최댓값은 1 이다.
- 4 A 의 값에 관계없이 $\cos A < \sin A < \tan A$ 이 성립한다.
 - ⑤ tan A 의 최솟값은 0이다.

8. $\sin x = 3\cos x$ 일 때, $\sin x \cos x$ 의 값을 구하여라. (단, $0^{\circ} < x < 90^{\circ}$)

$$\triangleright$$
 정답: $\frac{3}{10}$

$$\sin x = 3\cos x$$
 를 $\sin^2 x + \cos^2 x = 1$ 에 대입하면 $9\cos^2 x + \cos^2 x = 1$ $10\cos^2 x = 1$


$$\therefore \cos x = \frac{1}{\sqrt{10}}$$

$$(∵ 0° < x < 90° ○ A \cos x > 0)$$
∴ $\sin x = \frac{3}{\sqrt{10}}$

$$\therefore \sin x \cos x = \frac{3}{\sqrt{10}} \times \frac{1}{\sqrt{10}} = \frac{3}{10}$$

9. $0^{\circ} < A < 45^{\circ}$ 일 때, $\sqrt{(\tan A + 1)^2} + \sqrt{(\tan 45^{\circ} - \tan A)^2}$ 을 간단히 하여라.

답:

10.
$$\sin(2x+30^\circ) = \cos(3y-45^\circ)$$
 일 때, $4x-y$ 의 값을 구하면? (단, $0^\circ < x < 30^\circ, \ 15^\circ < y < 45^\circ$)

①
$$0^{\circ}$$
 ② $\frac{15}{2}^{\circ}$ ③ 18° ④ 30° ⑤ 45°

$$\sin x = \cos x$$
 인 $x = 45^\circ$ 이다. 따라서 $2x + 30^\circ = 45^\circ, 3y - 45^\circ = 45^\circ$ $x = \frac{15}{2}, y = 30$ 이다. 따라서 $4x - y = 30^\circ - 30^\circ = 0^\circ$ 이다.

11. 다음 표는 삼각비의 값을 소수 넷째 자리까지 나타낸 것이다. 삼각비의 값을 바르게 나타낸 것을 보기에서 모두 고르면?

각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
35°	0.5736	0.8192	0.7002
45°	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

(a)
$$\frac{1}{2}\cos 70^\circ = 0.8192$$
 (b) $3\tan 45^\circ = 3$

$9 \sin 20^{\circ} = 0.3420$

$$2 \sin 10^{\circ} = 2 \times 0.1736 = 0.3472$$

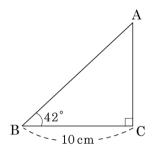
12. 다음 표를 이용하여

 $(\cos 55^\circ + \sin 56^\circ - \tan 54^\circ) \times 10000$ 의 값을 구하여라.

각도	sin	cos	tan
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

① 26 ② 97 ③ 170 ④ 262 ⑤ 324

$$\cos 55^{\circ} = 0.5736$$


해설

 $\cos 55^{\circ} = 0.5736$ $\sin 56^{\circ} = 0.8290$ $\tan 54^{\circ} = 1.3764$

 $\therefore (\cos 55\,^{\circ} + \sin 56\,^{\circ} - \tan 54\,^{\circ}) \times 10000$

 $= (0.5736 + 0.8290 - 1.3764) \times 10000 = 262$

13. 다음 그림에서 ΔABC 의 넓이를 구하면?

〈삼각비의 표〉

x	sin x	cos x	tan x
42°	0.66	0.74	0.90
43°	0.68	0.73	0.93
44°	0.69	0.72	0.97

 $2 37 \,\mathrm{cm}^2$

 $345 \,\mathrm{cm}^2$

 $4 72 \, \text{cm}^2$

 $90 \, \text{cm}^2$

해설

 $\overline{AC} = x$ 라 하면

 $\angle B = 42^{\circ}$ 이므로 $x = 10 \times \tan 42^{\circ} = 10 \times 0.9 = 9$

따라서 \triangle ABC 의 넓이는 $10 \times 9 \times \frac{1}{2} = 45 \text{(cm}^2)$ 이다.

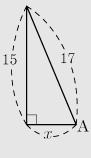
다음 직각삼각형에서
$$\overline{AB} = \overline{BD} = \overline{DC}$$
, $\overline{AD} = 2\sqrt{2}$ 일 때, $\cos x$ 의 값을 구하면?

(1) $\frac{3\sqrt{10}}{10}$ ② $\frac{\sqrt{10}}{10}$ ③ $\frac{3}{10}$
④ $\frac{10\sqrt{10}}{3}$ ⑤ $\frac{10\sqrt{3}}{3}$

을 만족하는 A 에 대해서 $\cos A \times \tan A$ 의 값을 구하여라.

답

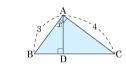
ightharpoonup 정답: $\frac{15}{17}$

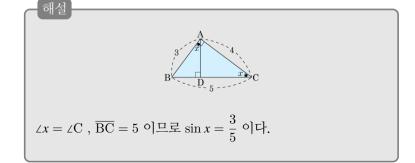

$$\therefore \sqrt{(\sin A + \cos A)^2} + \sqrt{(\cos A - \sin A)^2}$$

$$= \sin A + \cos A - \cos A + \sin A$$

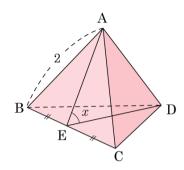
$$= 2\sin A = \frac{30}{17}$$

$$15$$


$$\therefore \sin A = \frac{15}{17}$$


그림에서
$$x = \sqrt{17^2 - 15^2} = 8$$
이므로 $\cos A = \frac{8}{17}, \tan A = \frac{15}{8}$

$$\therefore \cos A \times \tan A = \frac{8}{17} \times \frac{15}{8} = \frac{15}{17}$$


16. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{AD} \perp \overline{BC}$, $\overline{AB} = 3 \text{cm}$, $\overline{AC} = 4 \text{cm}$ 일 때, $\sin x$ 의 값은?

①
$$\frac{3}{2}$$
 ② $\frac{1}{3}$ ③ $\frac{5}{3}$ ④ $\frac{3}{5}$ ⑤ $\frac{1}{2}$

17. 다음 그림과 같이 한 변의 길이가 2 인 정사면체 A - BCD 에서 \overline{BC} 의 중점을 E 라 하고, $\angle AED = x$ 일 때. $\cos x$ 의 값은?

해설

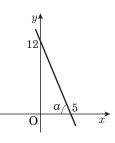
$$\bigcirc \frac{1}{3}$$

$$\frac{1}{3}$$

 $3\frac{1}{4}$ $4\frac{1}{5}$

$$\frac{1}{6}$$

$$\overline{BE}=1$$
 이고 점 H 는 ΔBCD 의 무게중심이므로 $\overline{EH}=\frac{1}{3}\overline{ED},$ $\overline{ED}=\sqrt{3}$ $\overline{EH}=\frac{1}{3}\times\sqrt{3}=\frac{\sqrt{3}}{3}$, $\overline{AE}=\sqrt{3}$


$$\cos x = \frac{\overline{EH}}{\overline{AE}} = \frac{\frac{\sqrt{3}}{3}}{\frac{\sqrt{3}}{\sqrt{3}}} = \frac{1}{3}$$
이다.

18. 이차방정식 $2x^2 - ax + 1 = 0$ 의 한 근이 $\sin 60^\circ - \sin 30^\circ$ 일 때, 상수 a 의 값을 구하여라.

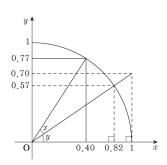
따라서 $a = \frac{2(3 - \sqrt{3})}{\sqrt{3} - 1} = 2\sqrt{3}$

해설
$$\sin 60^{\circ} - \sin 30^{\circ} = \frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{\sqrt{3} - 1}{2} \circ \Box \vec{x} = \frac{\sqrt{3} - 1}{2} = \frac{\sqrt{3} - 1}{2}$$
 의무로 $\frac{\sqrt{3} - 1}{2}$ 을 주어진 식의 x 에 대입하면
$$2\left(\frac{\sqrt{3} - 1}{2}\right)^2 - \left(\frac{\sqrt{3} - 1}{2}\right)a + 1 = 0, \left(\frac{\sqrt{3} - 1}{2}\right)a = 3 - \sqrt{3}$$

19. 직선 12x + 5y - 60 = 0 이 x 축과 이루는 예각 의 크기를 a 라 할 때, $\sin a \times \cos a \times \tan a$ 의 값을 구하여라.

$$ightharpoonup$$
 정답: $rac{144}{169}$

직선
$$12x + 5y - 60 = 0 \Rightarrow y = -\frac{12}{5}x + 12$$
 이므로


$$\tan \theta = \frac{(\stackrel{\cdot}{\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{}|} = \frac{(\stackrel{\cdot}{\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{}|} = \frac{(\stackrel{\cdot}{\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{}|} = \frac{(\stackrel{\cdot}{\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{}|} = \frac{(\stackrel{\cdot}{\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{}|} = \frac{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{}|} = \frac{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})} = \frac{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})} = \frac{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})} = \frac{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})} = \frac{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})} = \frac{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})} = \frac{(\stackrel{\cdot}{\underline{}}\underline{}}\underline{})}{(\stackrel{\cdot}{\underline{}}\underline$$

이고,
밑변이 5, 높이가 12 이므로 빗변은
$$\sqrt{5^2+12^2}=13$$
 이다.

따라서 $\sin a = \frac{12}{13}, \cos a = \frac{5}{13}$ 이므로 $\sin a \times \cos a \times \tan a = \frac{12}{13}$

따라서
$$\sin a = \frac{12}{13}, \cos a = \frac{12}{13} \times \frac{5}{13} \times \frac{12}{5} = \frac{144}{169}$$
이다.

다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 중 틀린 20. 것은?

①
$$\sin(x + y) = 0.77$$

$$2\sin y = 0.82$$

$$(3) \cos(x+y) = 0.40$$

$$4\cos(x+y) = 0.40$$

② $\sin y = 0.57$

해설

21. $0^{\circ} < A < 60^{\circ}$ 일 때, $\sqrt{\left(\frac{1}{2} - \cos A\right)^2 - \sqrt{(\cos A + \sin 30^{\circ})^2}}$ 의 값을 구하면?

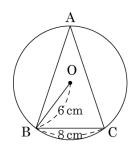
① $2\sin A$

 $2 \frac{1}{2} \sin A$

(4) 0

 $0^{\circ} < A < 60^{\circ}$ 의 범위에서 $\cos A$ 의 범위는 $\frac{1}{2} < \cos A < 1$ 이므로

 $\frac{1}{2} - \cos A < 0$ 이다.

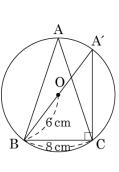

 $\sqrt{\left(\frac{1}{2} - \cos A\right)^2} - \sqrt{(\cos A + \sin 30^\circ)^2}$

 $= -\left(\frac{1}{2} - \cos A\right) - (\cos A + \sin 30^\circ)$ $= -\frac{1}{2} + \cos A - \cos A - \sin 30^{\circ}$

 $=-\frac{1}{2}-\sin 30^{\circ}$

 $=-\frac{1}{2}-\frac{1}{2}=-1\left(\because \sin 30^{\circ}=\frac{1}{2}\right)$

22. 다음 그림과 같이 반지름의 길이가 6 cm 인원 O에 내접하는 $\triangle ABC$ 에서 $\overline{BC} = 8 \text{ cm}$ 일 때, $\sin A + \cos A \times \tan A$ 의 값을 구하여라.


▶ 답:

$$ightharpoonup$$
 정답: $\frac{4}{3}$

해설
$$\frac{\angle A}{A'C} = \angle A', \ \overline{BA'} = 12 \ (cm) \ \circ | \Box \Xi |$$

$$\overline{A'C} = \sqrt{12^2 - 8^2} = 4\sqrt{5} \ (cm)$$

$$\therefore \sin A = \frac{8}{12} = \frac{2}{3}, \cos A = \frac{4\sqrt{5}}{12} = \frac{\sqrt{5}}{3}, \tan A = \frac{8}{4\sqrt{5}} = \frac{2}{\sqrt{5}}$$
따라서 $\sin A + \cos A \times \tan A$ 의 값은
$$\frac{2}{3} + \frac{\sqrt{5}}{3} \times \frac{2}{\sqrt{5}} = \frac{4}{3} \ \circ | \Box \rangle.$$

