
- $\tan A = 0.5$ 일 때, $\sin A + \cos A$ 의 값은?(단, 0° < A < 90°) 1.
 - ① $\frac{\sqrt{5}}{5}$ ② $\frac{2\sqrt{5}}{5}$ ③ $\frac{3\sqrt{5}}{5}$ ④ $\frac{4\sqrt{5}}{5}$ ⑤ $\sqrt{5}$

tan 60°×sin 30° - cos 30°×tan 45° 의 값은? **2**. ① 0 2 $\frac{1}{2}$ 3 $\frac{\sqrt{3}}{2}$ 4 $\sqrt{3}$ 5 1

해설 $\tan 60^{\circ} \times \sin 30^{\circ} - \cos 30^{\circ} \times \tan 45^{\circ} = \sqrt{3} \times \frac{1}{2} - \frac{\sqrt{3}}{2} \times 1 = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = 0$ 이다.

 $\textcircled{4} \ 25\,\mathrm{cm}$ $32 \, \mathrm{cm}$

 $\overline{AB} = \frac{16}{\sin 30^{\circ}} = 32$

 $\therefore \overline{AB} = 32 (\,\mathrm{cm})$

16 cm

다음 그림과 같이 반지름의 길이가 1 인부채꼴에서 CD⊥AB 일 때, DB 의 길이를 옳게 나타낸 것은?
 ① cos 50°

 \mathbf{C}

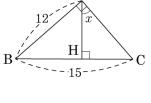
A 50°

②1 - cos 50°

- $3 1 \tan 50^{\circ}$
- 4 tan 50°5 sin 50° + cos 50°

 $\mathbf{5.}$ $\sin 3x = \frac{\sqrt{2}}{2}$ 일 때, $\tan 4x$ 의 값을 구하여라. (단, $0^{\circ} \le x \le 30^{\circ}$)

▶ 답:


▷ 정답: √3

 $\sin 3x = \frac{\sqrt{2}}{2} , 3x = 45^{\circ}$ $\therefore x = 15^{\circ}$ $\therefore \tan 4x = \tan 60^{\circ} = \sqrt{3}$

다음 그림에서 ∠BAC = 90°이고, BC⊥AH이다. ∠CAH = x라할때, 6. tan *x* 의 값은?

 $\overline{AC} = \sqrt{15^2 - 12^2} = 9$ △ABC∽△HAC (∵ AA 닮음)

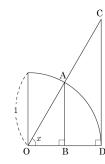
 $x = \angle ABC$ 이므로 $\tan x = \frac{9}{12} = \frac{3}{4}$

7. 다음 그림에서 $\overline{AC}=10$, $\overline{AB}=12$, $\angle A=$ $60\,^{\circ}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.

① $2\sqrt{11}$ ② $2\sqrt{17}$ ③ $2\sqrt{21}$ ④ $2\sqrt{29}$ ⑤ $2\sqrt{31}$

해설

$$\sin 60^{\circ} = \frac{\overline{CH}}{10} = \frac{\sqrt{3}}{2}, \ \overline{CH} = 5\sqrt{3}$$
$$\cos 60^{\circ} = \frac{\overline{AH}}{10} = \frac{1}{2}, \ \overline{AH} = 5$$


$$\overline{BC} = \sqrt{\overline{CH}^2 + \overline{BH}^2}$$

$$= \sqrt{(5\sqrt{3})^2 + 7^2} = \sqrt{75 + 49}$$

$$=\sqrt{(5\sqrt{3})^2+}$$

$$= \sqrt{124} = 2\sqrt{31}$$

8. 그림과 같이 반지름의 길이가 1 인 사분원에서 $\tan x$ 를 나타내는 선분은?

 $\tan x = \frac{\overline{CD}}{\overline{OD}} = \frac{\overline{CD}}{1} = \overline{CD}$

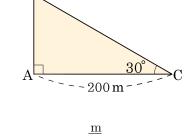
- 9. 다음 중 삼각비의 값의 대소 관계로 옳지 <u>않은</u> 것을 모두 고르면?
 - ① $\sin 20^{\circ} < \sin 49^{\circ}$ ③ $\sin 45^{\circ} = \cos 45^{\circ}$
- $\bigcirc \cos 10^{\circ} < \cos 47^{\circ}$
- (5) tan 23° < tan 73°

 $0^{\circ} \le x \le 90^{\circ}$ 인 범위에서 x 의 값이 증가하면 $\sin x, \tan x$ 의 값은

해설

각각 증가하고, $\cos x$ 의 값은 감소한다.

10. 삼각비의 표를 보고 다음을 만족하는 $x \times y \div z - 5$ 의 값은?


각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
35°	0.5736	0.8192	0.7002
45°	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

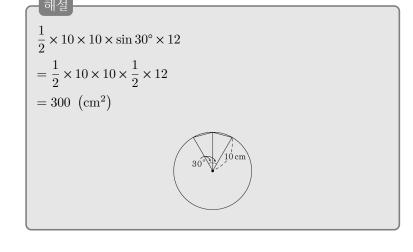
 $\cos y = 0.9397$ $\tan z = 2.7475$ ① 1 ② 2 ③ 3 ④ 5 ⑤ 6

 $\sin x = 0.5736$

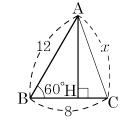
 $x = 35^{\circ}, y = 20^{\circ}, z = 70^{\circ}$ $x \times y \div z - 5 = 35 \times 20 \div 70 - 5 = 5$

11. 강의 양쪽에 있는 두 지점 A, B 사이의 거리를 구하기 위해 A 지점에서 $200\mathrm{m}$ 떨어진 곳에 다음 그림과 같이 C 지점을 정하였다. C 지점에서 A 지점과 B 지점을 바라본 각의 크기가 30° 일 때, 두 지점 A, B 사이의 거리를 구하여라.

ightharpoonup 정답: $rac{200\,\sqrt{3}}{3}\underline{ ext{m}}$


▶ 답:

 $\tan 30^{\circ} = \frac{\overline{AB}}{\overline{AC}}, \overline{AB} = \overline{AC} \times \tan 30^{\circ}$ $\overline{AB} = 200 \times \frac{\sqrt{3}}{3} = \frac{200\sqrt{3}}{3} \text{(m)}$


12. 반지름의 길이가 10cm 인 원에 내접하는 정십이각형의 넓이를 구하여라.

답: <u>cm²</u>

▷ 정답: 300 cm²

13. 다음 그림에서 x 의 길이를 구하면?

 $4\sqrt{7}$

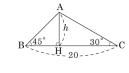
⑤ $4\sqrt{11}$

$$\overline{AH} = 12 \sin 60^{\circ} = 12 \times \frac{\sqrt{3}}{2} = 6 \sqrt{3}$$
 $\overline{BH} = 12 \cos 60^{\circ} = 12 \times \frac{1}{2} = 6$

해설

① $4\sqrt{2}$ ② $4\sqrt{3}$ ③ $4\sqrt{5}$

$$BH = 12\cos 60^{\circ} = 12 \times \frac{1}{2} = 6$$


$$\overline{CH} = 8 - 6 = 2$$

$$\overline{\text{CH}} = 8 - 6 = 2$$

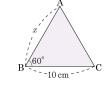
$$x = \sqrt{(6\sqrt{3})^2 + 2^2} = \sqrt{108 + 4} = \sqrt{112} = 4\sqrt{7}$$

14. 다음 그림과 같은 \triangle ABC 에서 높이 h 를 구하면?

해설

①
$$10(\sqrt{2}-1)$$
 ② $10(\sqrt{3}-1)$ ③ $10(\sqrt{3}-\sqrt{2})$ ④ $10(\sqrt{2}-2)$

해설
$$h = \frac{20}{\tan(90^{\circ} - 45^{\circ}) + \tan(90^{\circ} - 30^{\circ})}$$


$$= \frac{20}{\tan 45^{\circ} + \tan 60^{\circ}}$$

$$= \frac{20}{1 + \sqrt{3}}$$

$$= \frac{20(\sqrt{3} - 1)}{3 - 1}$$

$$= 10(\sqrt[3]{3} - 1)$$

15. 다음 그림에서 \triangle ABC 의 넓이가 $50\sqrt{3}$ cm² 일 때, x 의 값은?

① 20cm ② 21cm ③ 22cm ④ 23cm ⑤ 24cm

$$50\sqrt{3} = \frac{1}{2} \times x \times 10 \times \sin 60^{\circ}$$

$$= \frac{1}{2} \times x \times 10 \times \frac{\sqrt{3}}{2}$$

$$= \frac{5\sqrt{3}}{2}x$$

$$\therefore x = 20(\text{cm})$$

16. 다음 그림에서 평행사변형 의 넓이는?

 $\bigcirc 21\sqrt{3}$

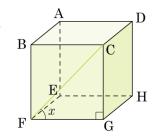
② $22\sqrt{3}$

 $3 23\sqrt{3}$

④ $24\sqrt{3}$

(평행사변형의 넓이) = $3 \times 14 \times \sin 60$ °

 $= 3 \times 14 \times \frac{\sqrt{3}}{2}$ $= 21\sqrt{3}$

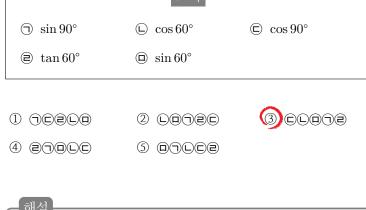

3 60°

17. $\sin A = 0.6$ 일 때, $\cos A + \tan A$ 의 값을 구하면? (단, $0^{\circ} \le A \le 90^{\circ}$

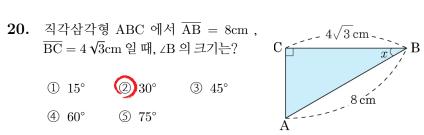
① 0.5 ② 0.6 ③ 0.7 ④ $\frac{9}{10}$ ⑤ $\frac{31}{20}$

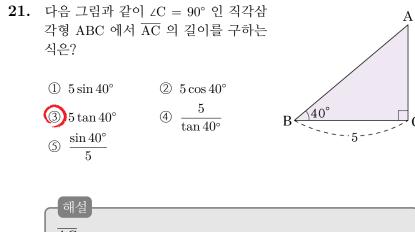
 $\sin A = 0.6 = \frac{3}{5}$ 이므로 $\cos A = \frac{4}{5}, \ \tan A = \frac{3}{4} \ \text{이다.}$ 따라서 $\cos A + \tan A = \frac{4}{5} + \frac{3}{4} = \frac{31}{20} \ \text{이다.}$

18. 다음 그림은 한 변의 길이가 1 인 정육면 체이다. $\angle CFG = x$ 일 때, $\sin x$ 의 값을 구하면?



- ① $\frac{\sqrt{2}}{2}$ ② $\frac{2\sqrt{2}}{3}$ ③ $\frac{2}{3}$ ④ $\frac{\sqrt{6}}{2}$
- ⑤ 2


$$\overline{\text{CF}} = \sqrt{2}, \overline{\text{CG}} = 1$$
 이므로
$$\sin x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \text{ 이다.}$$


$$\int_{0}^{\sin x} \sqrt{2} = \int_{0}^{\pi} \sqrt{2}$$

19. 다음 삼각비의 값을 크기가 작은 것부터 차례로 나열한 것은?

া প্রাপ্ত ভাগ $90^\circ = 1$ $\Box \cos 60^\circ = \frac{1}{2}$ $\Box \cos 90^\circ = 0$ $\Box \tan 60^\circ = \sqrt{3}$ $\Box \sin 60^\circ = \frac{\sqrt{3}}{2}$ $\Box \cos 90^\circ < \Box \cos 60^\circ < \Box \sin 60^\circ < \neg \sin 90^\circ < \Box \tan 60^\circ$

- 22. 다음 그림과 같이 직각삼각형에서 x 의 길 이를 구하는 식은?

 - $2 x = 10 \tan 35^{\circ}$
 - $3 x = \frac{10}{\sin 35^{\circ}}$

23. $0^{\circ} < x < 45^{\circ}$ 일 때, $\sqrt{(1 - \tan x)^2}$ 의 값은?

4 1

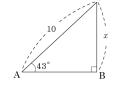
① $1 - \tan x$ ② $\tan x + 1$ ③ $\tan x - 1$

⑤ 0

 $0^{\circ} < x < 45^{\circ}$ 일 때, $\tan x < \tan 45^{\circ}$ 이므로 $\tan x < 1$ 이다. 따라서 $1 - \tan x > 0$ 이고, $\sqrt{(1 - \tan x)^2} = 1 - \tan x$ 이다.

24. $0^{\circ} < x < 90^{\circ}$ 일 때, $\sqrt{(\cos x + 1)^2} + \sqrt{(\cos x - 1)^2}$ 의 값은?

① $\cos x$ **4** 1


해설

 $\bigcirc 2\cos x$

⑤ 0

 $0^{\circ} < x < 90^{\circ}$ 일 때, $0 < \cos x < 1$ 이므로 $\sqrt{(\cos x + 1)^2} + \sqrt{(\cos x - 1)^2}$ $= \cos x + 1 - (\cos x - 1) = 2$

25. 다음 그림의 \triangle ABC 에서 삼각비의 표를 보고 x 의 값을 구하면?

〈삼각비의 표〉

x	sin x	cos x	tan x
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

① 6.82 ② 6.947 ③ 7.071 ④ 7.193 ⑤ 7.314

 $\sin 43^\circ = \frac{x}{10}$ 이므로 $x = 10 \times \sin 43^\circ = 10 \times 0.682 = 6.82$: 6.82