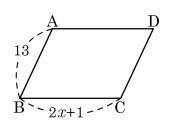
1. 평행사변형ABCD 의 둘레의 길이가 60 일 때, x의 값은?



해설 (둘레의 길이) =
$$2 \times ($$
가로의 길이 + 세로의 길이) 이므로 $2 \times (13 + 2x + 1) = 60$ 따라서 $x = 8$

 □
 □

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 □
 ○

 <td

평행사변형의 이웃하는 두 각의 크기의 합은 180°이다.

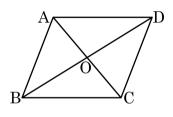
다음 그림의 평행사변형 ABCD 에서 ∠A +

∠D 의 값을 구하여라.

3. 다음 중 평행사변형에 대한 설명으로 옳지 <u>않은</u> 것은?

- ① 두 쌍의 대변이 평행하다.
- ② 두 쌍의 대변의 길이가 같다.
- ③ 두 쌍의 대각의 크기가 서로 같다.
- ④ 두 대각선이 서로 수직이등분한다.
- ⑤ 두 대각선은 서로 다른 것을 이등분한다.

해설 두 대각선이 서로 수직이등분하는 것은 마름모와 정사각형이다. **4.** 다음 평행사변형 ABCD 에서 △OBC 의 넓이가 20 cm² 일 때, □ABCD 의 넓이를 구하여라.



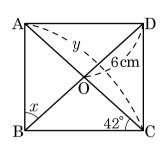
 $\underline{\mathrm{cm}}^2$

▷ 정답: 80 cm²

답:

$$\Box ABCD = 4 \times \triangle OBC = 4 \times 20 = 80 (\text{ cm}^2)$$

5. 다음 그림과 같이 직사각형 ABCD 에서 x, y의 값이 옳게 짝지어진 것은?



① $x = 42^{\circ}, y = 12$ cm

 $x = 48^{\circ}, y = 12 \text{cm}$

③ $x = 48^{\circ}, y = 6 \text{cm}$

 $4 x = 58^{\circ}, y = 12 \text{cm}$

⑤ $x = 58^{\circ}, y = 6$ cm

해설

직사각형의 한 내각의 크기는 90°, $\angle {\rm OBC} = 42^{\circ}$.: $x = 90 - 42 = 48^{\circ}$

직사각형은 대각선의 길이가 같고 서로 다른 것을 이등분하므로

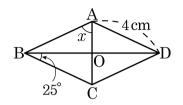
 $y = 2 \times 6 = 12(cm)$

- 6. 다음은 평행사변형이 직사각형이 되는 것에 대한 이야기이다. 바르게 말한 학생은?
 - ① 관식: 평행사변형에서 각 대각선이 서로 다른 대각선을 이등분하면 직사각형이야.
 - ② 관희: 평행사변형에서 두 대각선이 직교하면 직사각형이야.
 - ③ 민희: 평행사변형의 두 내각의 크기의 합은 180°일 때 직사각형이야.
 - ④ 진수: 평행사변형에서 두 대각선의 길이가 같거나, 한 내각의 크기가 90° 이면 직사각형이야.
 - ⑤ 정민: 평행사변형의 이웃하는 두 변의 길이가 같으면 직사각형이야.

평행사변형이 직사각형이 되기 위한 조건은 두 대각선의 길이가 서로 같다. 한 내각이 직각이다. 따라서 진수가 바르게 말했다.

해설

7. 다음 그림과 같은 마름모 ABCD 에서 $\angle x$ 의 크기를 구하면?



① 25°

② 45°

③ 50°

4)65

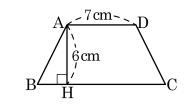
⑤ 75°

해설

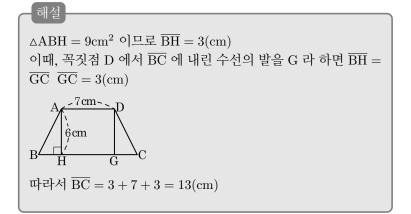
대각선이 한 내각을 이등분하므로 ∠ABO = 25° 이고, ∠AOB = 90°

따라서 $\angle x = 90^{\circ} - 25^{\circ} = 65^{\circ}$ 이다.

8. \Box ABCD 는 \overline{AD} // \overline{BC} 인 등변사다리꼴이다. 그림에서 \triangle ABH = $9\mathrm{cm}^2$ 일 때, \overline{BC} 의 길이는?



① 9cm ② 10cm ③ 11cm ④ 12cm ⑤ 13cm



- **9.** 다음 도형의 성질에 대한 설명 중 옳지 <u>않은</u> 것은?
 - ① 마름모의 두 대각선은 직교한다.
 - ② 직사각형의 두 대각선의 길이는 같다.
 - ③ 등변사다리꼴의 두 대각선은 수직으로 만난다.
 - ④ 등변사다리꼴의 평행하지 않은 두 변의 길이는 같다.
 - ⑤ 정사각형의 두 대각선은 서로 다른 것을 이등분한다.

- 해설

③ 등변사다리꼴의 두 대각선의 길이가 같고, 대각선은 수직으로 만나지 않는다. **10.** ΔABC 에서 \overline{BD} : $\overline{DC} = 1:2$ 이다. ΔABC = 21cm^2 일 때, ΔADC 의 넓이는?

$$B$$
 D
 C

$$\bigcirc$$
 7cm²

 2 8cm^2

 $3 \frac{21}{2} cm^2$

$$4$$
14cm²

 \bigcirc 16cm²

두 삼각형의 높이는 같고 BD : BC = 1 : 3 이므로 ΔADC : ΔABC = 2 : 3

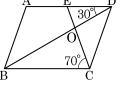
따라서 $\triangle ADC = \triangle ABC \times \frac{2}{3} = 14(cm^2)$

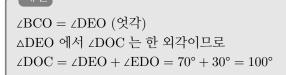
11. 다음 그림과 같은 평행사변형 ABCD 에서 ∠*x* 의 크기는?

- ① 30°
- ② 35°
- ③ 45°

65°

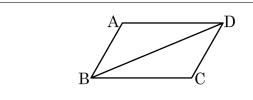
12. 평행사변형 ABCD 에서 ∠BCO = 70°, ∠EDO = 30° 일 때, ∠DOC 의 크기는?





③ 90°

13. 다음은 '평행사변형에서 두 쌍의 대각의 크기가 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 알맞은 것은?



평행사변형 ABCD에 점 B와 점 D를 이으면 △ABD △CDB에서

 $\overline{AB} = \overline{CD} \cdots \bigcirc,$

 $\overline{AD} = | \cdots | \cdots | \cdots |$

BD 는 공통 · · · ⓒ

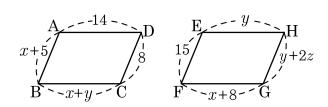
 \bigcirc , \bigcirc , \bigcirc 에 의해서 $\triangle ABD \equiv \triangle CDB$ (SSS 합동) $\therefore \angle A = \angle C, \angle B = \angle D$

 \bigcirc \overline{AB} \bigcirc \bigcirc \overline{CD} \bigcirc \bigcirc \bigcirc \overline{AD} \bigcirc \bigcirc \bigcirc \overline{BD}

△ABD △CDB에서 $\overline{AB} = \overline{CD}$, $\overline{AD} = \overline{CB}$, \overline{BD} 는 공통이므로

△ABD ≡ △CDB (SSS 합동)이다.

14. 다음 그림과 같이 두 개의 평행사변형이 있을 때, x + y + z 의 값을 구하여라.



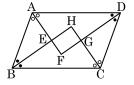
▶ 답:

▷ 정답: 16

평행사변형의 대변의 길이는 서로 같다. 평행사변형 ABCD 에서는 14=x+y, x+5=8평행사변형 EFGH 에서는 y=x+8, 15=y+2zx=3, y=11, z=2

 $\therefore x + y + z = 16$

15. 평행사변형 ABCD 에서 ∠A, ∠B, ∠C, ∠D 의 이등분선을 그어 그 교점을 각각 E, F, G, H 라 하면 ∠HEF 의 크기는?

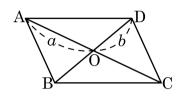


$$\angle A + \angle B = 180^{\circ}$$

 $\angle HEF = \frac{1}{2} \times (\angle A + \angle B) = 90^{\circ}$

③ 80°

16. 다음 $\Box ABCD$ 에서 두 대각선의 길이의 합은 20cm이다. 이 사각형이 평행사변형이 되기 위해서 a+b의 값이 얼마여야 하는지 구하여라.



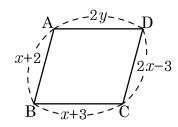
cm

▷ 정답: 10 cm

답:

두 대각선이 서로 다른 것을 이등분하면 평행사변형이므로
$$2(a+b)=20$$
에서 $a+b=\frac{20}{2}=10\,\mathrm{cm}$ 이다.

17. 다음 그림과 같은 $\square ABCD$ 가 평행사변형이 되도록 하는 x, y의 값은?

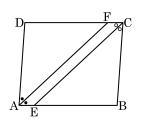


- 답:
- 답:
- \triangleright 정답: x=5
- > 정답: y = 4

해설
$$x + 2 = 2x - 3$$
 에서 $x = 5$,

2y = x + 3 = 8 에서 y = 4

18. 다음 그림과 같이 평행사변형 ABCD 에서 ∠A, ∠C 의 이등분선이 변 CD, BA 와 만나는 점을 각각 E, F 라 할 때, $\overline{AF} = 8 \text{cm}$, $\overline{DF} =$ 6cm, $\overline{AB} = 7$ cm 이다. 사각형 AECF 의 둘레의 길이를 구하여라.



▶ 답:

이다

cm

두 쌍의 대각의 크기가 각각 같으므로 □AFCE 는 평행사변형

▷ 정답: 18 cm

해설 □ABCD 가 평행사변형이므로

$$\angle BAD = \angle BCD$$
 이므로 $\frac{\angle BAD}{2} = \frac{\angle BCD}{2}$

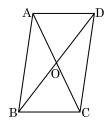
∠ECF = ∠CEB (: 엇각) ∠AFD = ∠FAE (∵ 엇각)

 $\therefore \angle AEC = \angle AEC$

평행사변형의 두 대변의 길이는 같으므로

 $2 \times (8+1) = 18$ (cm) 이다.

19. 다음과 같은 평행사변형 ABCD 에서 △AOB 의 넓이가 8 일 때, △ABC 의 넓이는?



① 8

- 2 10

③ 12

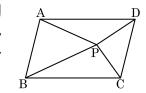
(4) 16

⑤ 알수 없다.

_ 해설 _____ ^AOB 안 ∧OBC 의 넓이느

 $\triangle AOB$ 와 $\triangle OBC$ 의 넓이는 같으므로 $\triangle ABC = 2 \times \triangle AOB = 16$ 이다.

20. 다음 그림과 같이 평행사변형 ABCD 의 내부에 한 점 P 를 잡을 때, △ABP = 40cm²,
 △BCP = 32cm², △ADP = 28cm² 이다.
 △CDP 의 넓이는?

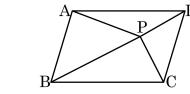


①
$$20 \text{cm}^2$$
 ② 22cm^2 ③ 24cm^2

 $4 \ 26 \text{cm}^2$ $5 \ 28 \text{cm}^2$

점 P 를 지나고
$$\overline{AD}$$
 와 \overline{AB} 에 평행한 선분을 그으면 $\triangle ABP + \triangle CDP = \triangle APD + \triangle BCP$ 이므로 $\triangle CDP = 28 + 32 - 40 = 20 \text{ (cm}^2\text{)}$

21. 평행사변형 ABCD 의 내부에 한 점 P 를 잡을 때, ΔPCD, ΔPAD, ΔPBC 의 넓이는 각각 10cm², 8cm², 22cm² 이 다.ΔPAB 의 넓이는?



② 15cm^2

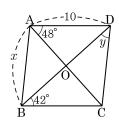
 $(3) 18 \text{cm}^2$

$$\textcircled{3}$$
 20cm² $\tag{3}$ 22cm²

 $\Delta PAD + \Delta PBC = \Delta PAB + \Delta PCD$ $8 + 22 = \Delta PAB + 10$ $\therefore \Delta PAB = 20(cm^{2})$

① 10cm^2

22. 다음 그림과 같은 평행사변형 ABCD 가 ∠DAC = 48°, ∠DBC = 42°일 때, *x*, *y*를 각 구하여라.



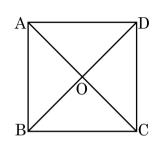
- ▶ 답:
- ▶ 답:
- ➢ 정답: x = 10
- > 정답: ∠y = 42°

해설

AD // BC 이므로 ∠ADO = ∠OBC = 42 °(엇각) 이다. ∠AOD = 180 ° - 48 ° - 42 ° = 90 ° 이므로 □ABCD 는 마름모이 다.

따라서 $x = \overline{\mathrm{AD}} = 10$, $\angle y = 42$ ° 이다.

23. 다음 그림과 같은 정사각형 ABCD 에 대한 설명으로 옳지 <u>않은</u> 것을 모두 고르면?



①
$$\overline{AC} = \overline{DB}$$

$$\overline{\text{AD}} = \overline{\text{BD}}$$

$$\overline{\text{SD}} = \overline{\text{OC}}$$

해설

정사각형은 두 대각선은 길이가 같고, 서로 다른 것을 수직이등 분한다. 따라서 $\overline{AC}=\overline{DB}$ 이고, $\angle AOB=90^\circ$, $\overline{AB}=\overline{BC}$ 이다.

24. 다음 설명하는 사각형은 어떤 사각형인가?

- ⊙ 네 변의 길이가 모두 같다.
- ⑥ 네 내각의 크기가 모두 같다.
- © 두 대각선의 길이가 같다.
- ② 두 대각선이 서로 수직이등분한다.

① 사다리꼴

② 등변사다리꼴

③ 정사각형

④ 마름모

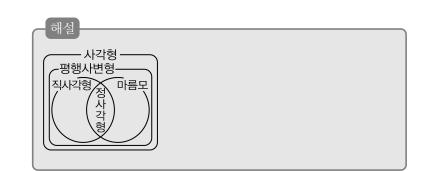
⑤ 직사각형

해설

정사각형은 네 변의 길이와 네 내각의 크기가 모두 같고, 두 대각선의 길이가 같고 서로 수직이등분한다.

25. 사다리꼴, 평행사변형, 직사각형, 마름모, 정사각형의 관계를 나타낸 것 중 옳지 <u>않은</u> 것은?

- ① 정사각형은 사다리꼴이다.
- ② 정사각형은 직사각형이면서 마름모이다.
- ③ 직사각형은 평행사변형이다.
- ④ 직사각형은 마름모이다.
- ⑤ 직사각형은 사다리꼴이다.



26. 다음 사각형 중에서 두 대각선의 길이가 같은 사각형을 모두 고르면? (정답 2 개)

 ① 사다리꼴
 ② 평행사변형
 ③ 직사각형

 ④ 정사각형
 ⑤ 마름모

해설 대각선의 길이가 같은 사각형은 직사각형, 정사각형이다. 27. 다음 보기 중에서 두 대각선의 길이가 같은 사각형은 모두 몇 개인가?

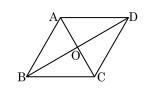
 ① 등변사다리꼴
 ② 마름모

 ② 직사각형
 ② 정사각형

 ② 평행사변형

① 1개 ② 2개 ③ 3개 ④ 4개 ⑤ 5개

해설 두 대각선의 길이가 같은 사각형은 직사각형, 정사각형, 등변사 다리꼴이다. 따라서 ⑦, ⓒ, ◉ 3 개이다. **28.** 다음 그림의 □ABCD 가 항상 평행사변형이 되기 위한 조건으로 옳지 <u>않은</u> 것을 보기에서 골라라.

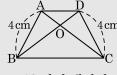


보기

- $\ \, \boxdot{AB} = \overline{DC} = 4\,\mathrm{cm}$, $\overline{AD} = \overline{BC} = 6\,\mathrm{cm}$
- © $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ (단, 점 O는 두 대각선의 교점)
- $\overline{\text{AD}}/\overline{\text{BC}}$, $\overline{\text{AB}} = \overline{\text{DC}} = 4 \text{ cm}$
- \bigcirc $\overline{AD}//\overline{BC}$, $\overline{AB}//\overline{DC}$
- ▶ 답:
- ▷ 정답: ②

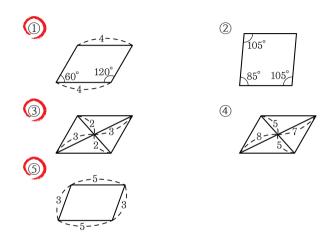
해설

- ⊙ 두 쌍의 대변의 길이는 같으므로 평행사변형이 된다.
- © 사각형의 내각의 합은 360° 이므로 $2C = 110^{\circ}$ 이다. 두 쌍의 대각의 크기가 같으므로 평행사변형이 된다.
- © 두 대각선이 서로 다른 것을 이등분하므로 평행사변형이 된다.
- @ (반례) 등변사다리꼴



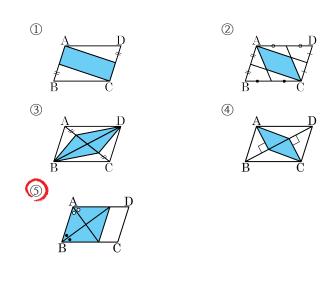
⑤ 두 쌍의 대변이 각각 평행하므로 평행사변형이 된다.

29. 다음 중 평행사변형인 것을 모두 고르면?



평행사변형은 두 쌍의 대변의 길이와 대각의 크기가 각각 같다.

30. 다음 □ABCD 가 평행사변형일 때, 색칠한 사각형 중 종류가 <u>다른</u> 것은?

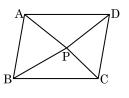


①,②,③,④ : 평행사변형 ⑤ 마름모

해설

31. 다음 그림과 같이 평행사변형 ABCD의 내부

에 임의의 점 P를 잡았다. $\triangle APB = 24 \text{ cm}^2$, $\triangle APD = 20 \,\mathrm{cm}^2$, $\triangle DPC = 14 \,\mathrm{cm}^2$ 일 때. △PBC의 넓이를 구하여라.



▷ 정답: 18 cm²

답:

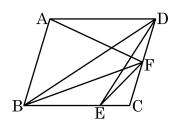
 $\triangle APB + \triangle DPC = \triangle APD + \triangle PBC$

 $24 + 14 = 20 + \triangle PBC$

 cm^2

 $\therefore \triangle PBC = 18 \text{ (cm}^2\text{)}$

32. 다음 그림은 평행사변형 ABCD 이다. 다음 중 옳은 것을 모두 고르면?



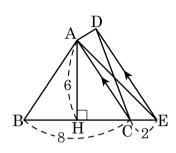
 $\triangle ADB = \triangle AFB$

 \bigcirc $\triangle BDE = \triangle BFE$

- ② $\triangle DBF = \triangle DEF$
- $\triangle BDE = \triangle EDC$

- ① $\bigcirc \triangle ADF = \triangle BDF (\overline{DF})$ 가 공통)
- $② \times \triangle DBF = \triangle DEF$
- \bigcirc × \triangle BDE = \triangle BFE
- $\textcircled{4} \bigcirc \triangle ADB = \triangle AFB (\overline{AB} \ ? \ \overline{AB})$
- \bigcirc × \land BDE = \land EDC

33. 다음 그림과 같이 \overline{AC} $/\!/ \overline{DE}$, $\overline{AH} \bot \overline{BC}$ 일 때, $\Box ABCD$ 의 넓이를 구하 여라



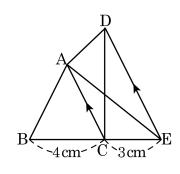
- 답:
- ▷ 정답: 30

해설

 \overline{AC} // \overline{DE} 이므로 밑변과 높이가 같아 $\triangle ACD = \triangle ACE$ 이다. $\Box ABCD = \triangle ABC + \triangle ACD = \triangle ABC + \triangle ACE = \triangle ABE$

 $\therefore \Box ABCD = \frac{1}{2} \times 6 \times (8+2) = 30$

34. 다음 그림에서 \overline{AC} $/\!/ \overline{DE}$ 일 때, △ABC = 8 cm² 이다. □ABCD 의 넓이를 구하여라.



답: <u>cm²</u>

정답: 14 cm²

△ACD = △ACE이므로

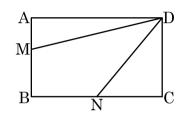
 $\Box ABCD = \triangle ABC + \triangle ACD$ $= \triangle ABC + \triangle ACE$

 $= \triangle ABC + \triangle ACE$ $= \triangle ABE$

 $\left(\frac{\mathsf{L}}{\mathsf{L}}\mathsf{O}\right) = 8 \times 2 \div 4 = 4 \text{ (cm)}$

(넓이) = $7 \times 4 \div 2 = 14 \text{(cm}^2\text{)}$

35. 다음 그림과 같은 직사각형 ABCD 에서 점 N 은 \overline{BC} 의 중점이고, $\overline{AM}:\overline{MB}=2:3$ 이다. $\Box ABCD=60 cm^2$ 일 때, $\Box MBND$ 의 넓이를 구하여라.



 cm^2

 답:

 ▷ 정답:
 33 cm²

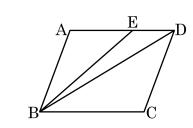
해설

$$\triangle DMB = \frac{3}{5} \triangle ABD = \frac{3}{10} \square ABCD$$
$$\triangle DBN = \frac{1}{2} \triangle DBC = \frac{1}{4} \square ABCD$$

 $= \frac{11}{20} \square ABCD$ = $\frac{11}{20} \times 60 = 33 (cm^2)$

 $\square MBND = \triangle DMB + \triangle DBN$

36. 다음 그림과 같은 평행사변형 ABCD의 넓이가 50cm^2 이고, $\overline{\text{AE}}$: $\overline{\text{ED}} = 3:2$ 일 때, $\triangle ABE$ 의 넓이는?



①
$$10 \text{cm}^2$$

$$2 12 \text{cm}^2$$

$$\bigcirc$$
 25cm²

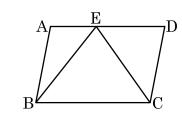
 $15 \mathrm{cm}^2$

$$4 20 \text{cm}^2$$

$$\triangle ABE + \triangle EBD = \frac{1}{2} \square ABCD$$

$$\therefore \triangle ABE = \frac{1}{2} \square ABCD \times \frac{3}{3+2} = 15(cm^2)$$

37. 다음 그림과 같은 평행사변형 ABCD 에서 $\overline{AE}:\overline{DE}=2:3$ 이고 $\triangle ABE=10 \mathrm{cm}^2$ 일 때, $\triangle EBC$ 의 넓이는?



 $\bigcirc 10 \text{cm}^2$

- $2 12 \text{cm}^2$
 - cm^2 3 15cm²

- $4 20 \text{cm}^2$

 $\triangle ABE + \triangle DCE = \frac{1}{2} \square ABCD$

 $\triangle ABE : \triangle DCE = 2 : 3$ $\triangle DCE = 15(cm^2)$

 $5(\mathrm{cm^2})$

 $\triangle EBC = \frac{1}{2} \square ABCD = 25(cm^2)$

38. 다음 평행사변형 ABCD 에서 \triangle BFC 의 넓이가 9, \triangle CDE 의 넓이가 7 일 때, \triangle AEF 의 넓이를 구하여라.

 $\begin{array}{c} A & E \\ \hline \\ B & \end{array} \begin{array}{c} C \\ \end{array}$

답:

▷ 정답: 2

변 AD 와 BC 가 평행하므로

 $\triangle ABC = \triangle EBC, \ \triangle ABE = \triangle ACE,$

 $\triangle ABC = \triangle EBC$, $\triangle ABE = \triangle ACE$ $\therefore \triangle ABF = \triangle ABC - \triangle FBC$

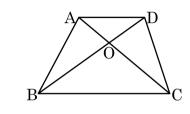
 $= \triangle EBC - \triangle FBC$

 $= \triangle EFC$

 $\triangle AEF = x$, $\triangle ABF = \triangle EFC = y$ 라고 하면 $\triangle ACD = 7 + x + y$

 $\triangle ABC = 9 + y$

 \triangle ACD = \triangle ABC 이므로 7 + x + y = 9 + y따라서 \triangle AEF = x = 2 이다. **39.** 다음 사다리꼴 ABCD 에서 $\overline{AD}//\overline{BC}$, \overline{AO} : \overline{OC} = 1 : 2 이고 $\Delta DOC = 12 cm^2$ 이다. 사다리꼴 ABCD 의 넓이는?



 $54 \, \mathrm{cm}^2$

 \bigcirc 32cm²

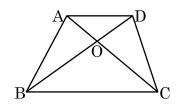
- ② 48cm² ⑤ 72cm²
- $4 63 cm^2$ $5 72 cm^2$

1 : 2 = \triangle AOD : 12cm² , \triangle AOD = 6cm² \triangle DOC = \triangle AOB = 12cm² , 1 : 2 = 12cm² : \triangle BOC , \triangle BOC =

 24cm^2

 $\Box ABCD = 6 + 12 + 12 + 24 = 54 (\text{ cm}^2)$

40. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 $\triangle AOB = 80 \text{cm}^2$, $2\overline{DO} = \overline{OB}$ 일 때, $\triangle DBC$ 의 넓이는?



① 180cm^2

② 200cm^2

③ 220cm^2

4 240cm²

⑤ 260cm^2

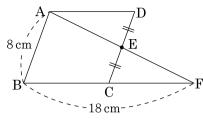
 $\triangle AOB = \triangle COD = 80 \text{cm}^2$

또. $2\overline{DO} = \overline{OB}$ 이므로

 $\therefore \triangle BOC = 160 \text{cm}^2$

따라서 $\triangle DBC = \triangle COD + \triangle BOC = 80 + 160 = 240 (cm^2)$

41. 다음 그림과 같은 평행사변형 ABCD에서 CD의 중점을 E라 하고, AE의 연장선이 BC 의 연장선과 만나는 점을 F라하자. 이 때 AD의 길이를 구하여라.



답:

해설

 $2\overline{AD} = 18$ $\therefore \overline{AD} = 9 \text{ cm}$

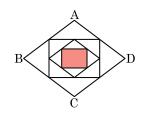
정답: 9 cm

$$\triangle ADE$$
와 $\triangle FCE$ 에서 $\overline{ED} = \overline{EC}$ $\angle ADE = \angle FCE()$ 억간) $\angle AED = \angle FEC()$ 맞꼭지각) $\therefore \triangle ADE \equiv \triangle FCE (ASA 합동)$ 따라서 $\overline{AD} = \overline{FC}$ 이고, 평행사변형이므로 $\overline{AD} = \overline{BC}$ 따라서 $\overline{CF} = \overline{AD} = \overline{BC}$

즉, $\overline{BF} = \overline{BC} + \overline{FC} = 2\overline{AD}$ 이므로

cm

42. 다음 그림은 마름모 ABCD 의 각 변의 중점을 계속하여 연결한 도형이다. 색칠된 부분의 넓이가 $12 \mathrm{cm}^2$ 일 때, 마름모 ABCD 의넓이를 구하여라.



답:

▷ 정답: 96 cm²

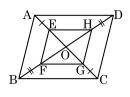
해설

각 변의 중점을 연결하여 만든 도형의 넓이는 처음 도형의 $\frac{1}{2}$ 이므로

 $\underline{\mathrm{cm}}^2$

마름모 ABCD 의 넓이는 $12 \times 2 \times 2 \times 2 = 96$ (cm²) 이다.

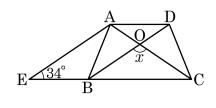
43. 다음 그림과 같은 평행사변형 ABCD에서 AE = CG, BF = DH일 때, □EFGH는 평행 사변형이 된다. 그 조건은?



- ① 두 쌍의 대변이 각각 평행하다
- ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선은 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변이 평행하고 그 길이가 같다.

해설

 $\overline{AO} = \overline{CO}, \overline{AE} = \overline{CG}$ 이므로 $\overline{EO} = \overline{GO}$ $\overline{BO} = \overline{DO}, \overline{BF} = \overline{DH}$ 이므로 $\overline{FO} = \overline{HO}$ 따라서 사각형 EFGH는 평행사변형이다. 44. 다음 그림의 $\Box ABCD$ 는 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이다. \overline{AE} $//\overline{DB}$, $\angle AEB = 34$ °일 때, $\angle x$ 의 크기를 구하여라.



답:

▷ 정답: 112°

해설

사각형 ABCD의 두 대각선의 교점을 점 O라고 하면, \overline{AE} $/\!/ \overline{DB}$ 이므로 $\angle AEB = \angle OBC = 34^\circ(\because 동위각)$ $\triangle ABC$ 와 $\triangle DCB$ 에서 \overline{BC} 는 공통,

등변사다리꼴의 성질에 의하여 $\overline{AB}=\overline{DC}$, $\angle ABC=\angle DCB$ 이므로

 $\triangle ABC \equiv \triangle DCB$

따라서 $\angle DBC = \angle ACB$ 이므로 $\triangle OBC$ 는 이등변삼각형이다.

 $\therefore \angle BOC = \angle x = 180^{\circ} - (2 \times 34^{\circ}) = 112^{\circ}$

- **45.** 다음 중 정사각형의 성질이지만 마름모의 성질은 <u>아닌</u> 것은?
 - ① 두 대각의 크기가 각각 같다.
 - ② 두 대각선이 서로 직교한다.
 - ③ 대각선에 의해 넓이가 이등분된다.
 - ④ 두 대각선의 길이가 같다.
 - ⑤ 내각의 크기의 합이 360°이다.

해설

마름모가 정사각형이 되기 위해서는 두 대각선의 길이가 같아야 한다.

46.	다음 보기와 같이	대각선의 성질과	사각형을 옳게 짝지은 것은	-?
------------	-----------	----------	----------------	----

보기

- ⊙ 두 대각선은 서로 다른 것을 이등분한다.
- ⑤ 두 대각선의 길이가 같다.
- ⓒ 두 대각선은 서로 수직으로 만난다.
- ② 두 대각선이 내각을 이등분한다.
- ① 등변사다리꼴 : ①, ①
- ② 평행사변형 : ᄀ, ፎ
- ③ 마름모: ①, ⓒ, ②

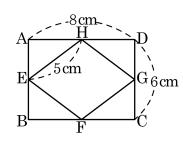
④ 직사각형 : ᄀ, □, □

⑤ 정사각형 : ①, ②, ②

해설

- ① 등변사다리꼴: ①
- ② 평행사변형: 🗇
- ④ 직사각형: ①, C
- ⑤ 정사각형 : ①, ⓒ, ⓒ, ⑧

47. 다음 그림의 직사각형 ABCD 의 중점을 연결한 사각형을 □EFGH 라고 할 때, 다음 중 옳지 않은 것은?

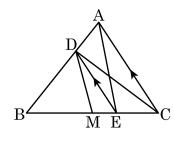


- ① $\overline{\mathrm{EH}}//\overline{\mathrm{FG}}$
- \bigcirc $\overline{EF} = 5cm$
- ③ 사각형 EFGH 의 둘레의 길이는 20cm 이다.
- ④ 사각형 EFGH 의 넓이는 25cm² 이다.
- ⑤ 사각형 EFGH 는 마름모이다.

사각형 EFGH 의 넓이는 사각형 ABCD 에서 모서리의 삼각형의 넓이를 뺀 값이다.

$$(6 \times 8) - 4 \times \left(\frac{1}{2} \times 4 \times 3\right) = 48 - 24 = 24 \text{ (cm}^2)$$

48. 다음 그림과 같은 △ABC에서 ĀC // DE 이고, BC 의 중점을 M 이라 한다. □ADME의 넓이가 10cm² 일 때, △DBC의 넓이를 구하여라. (단, 단위는 생략한다.)



▶ 답:

➢ 정답: 20

해설

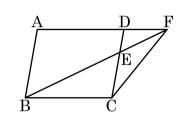
 $\overline{\text{DE}} / / \overline{\text{AC}}$ 이므로 밑변과 높이가 같아 $\Delta \text{DAE} = \Delta \text{DEC}$ 이므로 $\Box \text{ADME} = \Delta \text{DME} + \Delta \text{DAE} = \Delta \text{DMC} = \Delta \text{DMC}$

 $10(\text{cm}^2)$ $\overline{\text{BM}} = \overline{\text{CM}}$ 이므로 밑변과 높이가 같아

 $\triangle DBM = \triangle DCM = 10(cm^2)$

 $\therefore \triangle DBC = 2 \times 10 = 20 (cm^2)$

49. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{DE}:\overline{EC}=1:2$ 일 때, $\triangle ADE + \triangle FEC$ 의 값은 평행사변형 ABCD의 넓이의 몇 배인가?



①
$$\frac{1}{2}$$
 바 ④ $\frac{1}{7}$ 바

 $3 \frac{1}{5}$ III

$$\triangle ADE$$
와 $\triangle BCE$ 는 높이는 같고 밑변이 $1:2$ 이므로 $\triangle ADE:$ $\triangle BCE=1:2$

$$\triangle ADE = \triangle ACD \times \frac{1}{1+2} = \frac{1}{2} \Box ABCD \times \frac{1}{3} = \frac{1}{6} \Box ABCD$$

$$\triangle BCE = 2\triangle ADE = \frac{1}{3} \Box ABCD$$

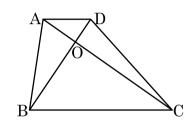
$$\overline{AF} /\!/ \overline{BC}$$
이므로 $\triangle FBC = \triangle DBC = \frac{1}{2} \square ABCD$

$$\triangle FEC = \triangle FBC - \triangle BCE = \left(\frac{1}{2} - \frac{1}{3}\right) \times \square ABCD$$

$$= \frac{1}{6} \square ABCD$$

$$\therefore \triangle ADE + \triangle FEC = \frac{1}{3} \square ABCD$$

50. 다음 그림에서 사다리꼴 ABCD 는 $\overline{AD}//\overline{BC}$, 이고 $\overline{OC}=3\overline{AO}$ 이다. $\triangle AOB=9\mathrm{cm}^2$ 일 때. $\triangle ACD$ 의 넓이를 구하여라.



 cm^2

▷ 정답: 12 cm²

해설

 $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$, \triangle $ABO = \triangle \mathrm{DOC} = 9\mathrm{cm}^2$ $\triangle \mathrm{AOD}$, $\triangle \mathrm{DOC} = \frac{1}{2}$ 는 높이가 같다.

△AOD , △DOC 는 높이가 짙다. △DOC : △AOD = 3 : 1 = 9cm² : △AOD ∴ △AOD =

 3cm^2 $\therefore \triangle ACD = \triangle AOD + \triangle DOC = 9 + 3 = 12 \text{cm}^2$