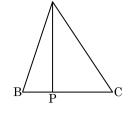
1. 다음 그림에서 $\overline{BP}:\overline{CP}=1:2, \triangle ABC=8\,\mathrm{cm}^2$ 일 때, $\triangle ABP$ 의 넓이를 구하여라.

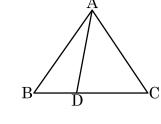


답: $\underline{\text{cm}^2}$ > 정답: $\underline{8}\underline{\text{cm}^2}$

3

 $\triangle ABP$ 와 $\triangle APC$ 의 높이는 같으므로 $\triangle ABP = 8 \times \frac{1}{3} = \frac{8}{3} \text{ (cm}^2\text{)}$

다음 그림을 보고 조건에 맞는 값을 각각 구하여라. **2**.



 $(1)~\overline{BD}:\overline{CD}=3:5,\, \triangle ABC=8\, cm^2$ 일 때, $\triangle ABD$ 의 넓이 (2) \overline{BD} : $\overline{CD}=3:5$, $\triangle ABC=16\,\mathrm{cm^2}$ 일 때, $\triangle ACD$ 의 넓이

답:

답:

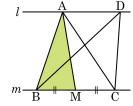
▷ 정답: (1) 3 cm²

▷ 정답: (2) 10 cm²

(1)
$$\triangle ABD = \frac{3}{8} \triangle ABC$$
이므로
 $\triangle ABD = \frac{3}{8} \times 8 = 3 \text{ cm}^2 \text{)}$
(2) $\triangle ACD = \frac{5}{8} \triangle ABC$ 이므로
 $\triangle ACD = \frac{5}{8} \times 16 = 10 \text{ cm}^2 \text{)}$

$$\triangle ACD = \frac{3}{8} \times 16 = 10 \text{ (cn)}$$

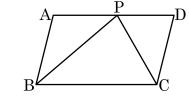
3. 다음 그림과 같이 평행한 두 직선 l, m 이 있다. $\Delta DBC = 20 \, \mathrm{cm}^2$ 이고, 점 M 은 \overline{BC} 의 중점일 때, △ABM 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$ ▶ 답: ▷ 정답: 10 cm²

 ΔABM 의 밑변의 길이는 ΔDBC 의 밑변의 길이의 $\frac{1}{2}$ 이므로 넓이도 $\frac{1}{2}$ 이다. $\therefore \triangle ABM = 10 \text{ (cm}^2)$

4. 다음 그림에서 □ABCD 는 평행사변형이다. □ABCD = $28 \mathrm{cm}^2$ 일 때, \triangle PBC 의 넓이를 구하여라.

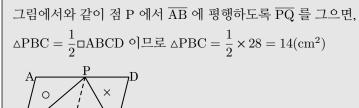


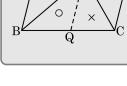
 $\underline{\mathrm{cm}^2}$

 ▷ 정답:
 14 cm²

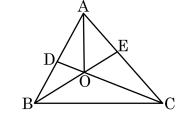
7 00: 11 <u>em</u>

▶ 답:





5. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AE}:\overline{EC}=3:4,\overline{BO}:\overline{OE}=3:2$ 이다. $\triangle EOC$ 의 넓이가 $8cm^2$ 일 때, $\triangle ABC$ 의 넓이는?



- ① 20cm² ④ 32cm²
- ② 24cm^2 ③ 35cm^2
- $3 28 \text{cm}^2$

 $\Delta {
m EOC}$ 와 $\Delta {
m COB}$ 에서 높이는 같고 밑변은 2:3이므로

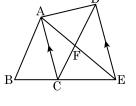
 $\triangle EOC = \triangle CBE \times \frac{2}{2+3} = 8(cm^2)$

∴ ΔCBE = 20(cm²) ΔABE와 ΔBCE에서 높이는 같고 밑변은 3 : 4이므로

 $\triangle CBE = \triangle ABC \times \frac{4}{3+4} = 20(cm^2)$

 $\therefore \Delta ABC = 35cm^2$

다음 그림은 □ABCD 의 변 BC 의 연장선 6. 위에 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 가 되게 점 E 를 잡은 것이다. $\square ABCD$ 의 넓이가 $30\,\mathrm{cm}^2$ 일 때, $\triangle ABE$ 의 넓이는? ① $15 \,\mathrm{cm}^2$ ② $20 \,\mathrm{cm}^2$ $3 25 \,\mathrm{cm}^2$



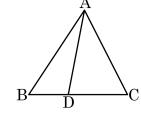
 $40 \, \text{cm}^2$ $50 \, \text{cm}^2$

해설

 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{ACD}=\triangle\mathrm{ACE}$ 이다. $\triangle \mathrm{ABE} = \triangle \mathrm{ABC} + \triangle \mathrm{ACE}$ $= \triangle \mathrm{ABC} + \triangle \mathrm{ACD}$ $= \Box \mathrm{ABCD}$

 $\therefore \triangle ABE = 30 (\text{cm}^2)$

7. 다음 그림을 보고 조건에 맞는 값을 각각 구하여라.



(1) $\overline{BD}:\overline{CD}=2:3,$ $\Delta ABC=5\,cm^2$ 일 때, ΔABD 의 넓이 (2) \overline{BD} : $\overline{CD}=2:3$, $\triangle ABC=10\,\mathrm{cm^2}$ 일 때, $\triangle ACD$ 의 넓이

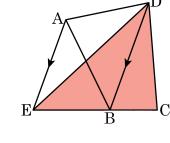
답:

답:

▷ 정답: (1) 2 cm² ▷ 정답: (2) 6 cm²

(1) $\triangle ABD = \frac{2}{5} \triangle ABC$ 이므로 $\triangle ABD = \frac{2}{5} \times 5 = 2 \text{ cm}^2$) (2) $\triangle ACD = \frac{3}{5} \triangle ABC$ 이므로 $\triangle ACD = \frac{3}{5} \times 10 = 6 \text{ cm}^2$)

8. 다음 그림에서 \overline{AE} $/\!/ \, \overline{DB}$ 이고, $\Box ABCD = 12\,\mathrm{cm}^2$ 일 때, ΔDEC 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

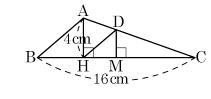
▷ 정답: 12<u>cm²</u>

▶ 답:

해설

 $\Delta DEC = \Delta DEB + \Delta DBC$ $= \Delta ABD + \Delta DBC$ $= \Box ABCD$ $\therefore \Delta DEC = 12(cm^{2})$

9. 다음 그림에서 점 M 은 $\overline{\mathrm{BC}}$ 의 중점일 때, $\Delta\mathrm{DHC}$ 의 넓이는?



- ① $4 \, \text{cm}^2$ ④ $14 \, \text{cm}^2$
- 2 8 cm^2
- $3 12 \,\mathrm{cm}^2$
- \bigcirc 16 cm²

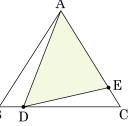
 $\overline{\mathrm{AM}}$ 을 그으면, $\Delta\mathrm{DHM}=\Delta\mathrm{AMD}$ 이므로,

해설

 $\Delta \mathrm{DHC} = \Delta \mathrm{AMC} = \frac{1}{2} \Delta \mathrm{ABC} = 16 \ (\mathrm{\,cm^2})$

2

 ${f 10}$. 다음 그림에서 $\overline{
m BD}:\overline{
m CD}=\overline{
m CE}:\overline{
m AE}=$ 1 : 4이다. $\triangle ADE = 32\,\mathrm{cm^2}$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.



 $\underline{\rm cm^2}$ ▶ 답: ▷ 정답: 50 cm²

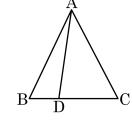
 $\triangle ABC$ 의 넓이를 x라 하면

 $\triangle ADC = x \times \frac{4}{5} = \frac{4}{5}x$

△ADC에서

조ADC 하지 $\overline{\text{CE}} : \overline{\text{AE}} = 1 : 4 \circ \Box \Box \Xi$ $\triangle \text{ADE} = \triangle \text{ADC} \times \frac{4}{5} = \frac{4}{5}x \times \frac{4}{5} = \frac{16}{25}x$ $\frac{16}{25}x = 32 \circ \Box \Box \Xi x = 50 \text{ (cm}^2\text{)}$

11. 다음 그림을 보고 조건에 맞는 값을 각각 구하여라.



(2) \overline{BD} : $\overline{CD}=1:2$, $\triangle ABC=6$ cm^2 일 때, $\triangle ACD$ 의 넓이

(1) \overline{BD} : $\overline{CD}=1:2$, $\triangle ABC=12\,\mathrm{cm}^2$ 일 때, $\triangle ABD$ 의 넓이

답:

▶ 답:

▷ 정답: (1) 4 cm²

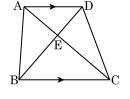
▷ 정답: (2) 4 cm²

(1) △ABC = 3△ABD 이므로

 $12 = 3 \triangle ABD$ $\therefore \triangle ABD = 4(\text{cm}^2)$

(2) $\triangle ACD = \frac{2}{3} \triangle ABC$ 이므로 $\triangle ACD = \frac{2}{3} \times 6 = 4 \text{ (cm}^2\text{)}$

12. 다음 그림의 사각형 ABCD 에서 $\overline{\rm AD}$ $//\overline{\rm BC}$ 이고, $\Delta \rm ABC$ 의 넓이가 $20~{\rm cm}^2$ 일 때, $\Delta \rm DBC$ 의 넓이를 구하여라.



 > 정답 :
 20 cm²

▶ 답:

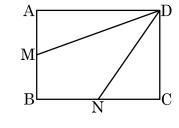
밑변이 동일하고 밑변과 평행한 직선까지의 거리가 같으므로 △ABC 의 넓이와 △DBC 의 넓이는 같다

해설

△ABC 의 넓이와 △DBC 의 넓이는 같다. ∴ △DBC = 20 cm²이다.

 $\underline{\mathrm{cm}^2}$

13. 직사각형 ABCD 에서 점 M, N 은 AB, BC 의 중점이다. □ABCD = $50 \mathrm{cm}^2$ 일 때, □MBND 의 넓이를 구하면?



- ① 12.5cm² ④ 27.5cm²
- ② 20cm^2 ③ 30cm^2
- \bigcirc 25cm²

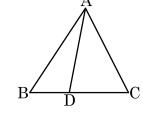
해설

© Goein

점 M, N 이 모두 \overline{AB} , \overline{BC} 의 중점이므로

 $\Box MBND = \frac{1}{2} \Box ABCD = 25cm^2$

14. 다음 그림을 보고 조건에 맞는 값을 각각 구하여라.



(1) \overline{BD} : $\overline{CD}=2:3,$ $\triangle ABC=15\,cm^2$ 일 때, $\triangle ABD$ 의 넓이 (2) $\overline{\mathrm{BD}}$: $\overline{\mathrm{CD}} = 2:3$, $\triangle\mathrm{ABC} = 20\,\mathrm{cm}^2$ 일 때, $\triangle\mathrm{ACD}$ 의 넓이

답:

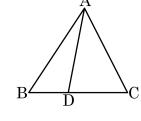
▷ 정답: (1) 6 cm²

답:

▷ 정답: (2) 12 cm²

(1)
$$\triangle ABD = \frac{2}{5} \triangle ABC$$
이므로
 $\triangle ABD = \frac{2}{5} \times 15 = 6 \text{ (cm}^2\text{)}$
(2) $\triangle ACD = \frac{3}{5} \triangle ABC$ 이므로
 $\triangle ACD = \frac{3}{5} \times 20 = 12 \text{ (cm}^2\text{)}$

15. 다음 그림을 보고 조건에 맞는 값을 각각 구하여라.



(1) \overline{BD} : $\overline{CD}=2:3$, $\triangle ABC=10\,cm^2$ 일 때, $\triangle ABD$ 의 넓이 (2) \overline{BD} : $\overline{CD}=2:3$, $\triangle ABC=25\,\mathrm{cm}^2$ 일 때, $\triangle ACD$ 의 넓이

답:

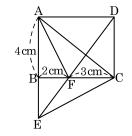
답:

▷ 정답: (1) 4 cm²

▷ 정답: (2) 15 cm²

(1) $\triangle ABD = \frac{2}{5} \triangle ABC$ 이므로 $\triangle ABD = \frac{2}{5} \times 10 = 4 \text{ cm}^2\text{)}$ (2) $\triangle ACD = \frac{3}{5} \triangle ABC$ 이므로 $\triangle ACD = \frac{3}{5} \times 25 = 15 \text{ cm}^2\text{)}$

- 16. 다음 그림에서 직사각형 ABCD 에서 점 $\rm E \leftarrow$ $\overline{
 m AB}$ 의 연장선 위의 점이고 $\overline{
 m DE}$ 와 $\overline{
 m BC}$ 의 교 점이 F 이다. 이때 ΔFEC 의 넓이는? $3 2 \text{ cm}^2$
 - $\bigcirc 1 \, \mathrm{cm}^2$ $2 1.5 \,\mathrm{cm}^2$ $\boxed{5}4\,\mathrm{cm}^2$
 - $\textcircled{4} \ 3\,\mathrm{cm}^2$

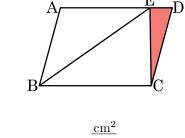


그림에서 $\overline{\mathrm{BD}}$ 를 그으면, $\Delta\mathrm{BFD} = \Delta\mathrm{FEC}$ 이므로

해설

 $\Delta FEC = \frac{1}{2} \times 2 \times 4 = 4 \text{ (cm}^2\text{)}$

 ${f 17}$. 다음 그림과 같이 넓이가 $100{
m cm}^2$ 인 평행사변형 ${
m ABCD}$ 에서 ${
m \overline{AD}}$ 위의 점 E 에 대하여 \overline{AE} : $\overline{DE}=4:1$ 일 때 ΔECD 의 넓이를 구하여라.



▷ 정답: 10<u>cm²</u>

▶ 답:

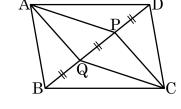
해설

 ΔABE , ΔECD , ΔEBC 의 높이는 모두 같다. $\overline{AE} + \overline{ED} = \overline{BC}$ 이므로, $\triangle ABE + \triangle ECD = \triangle EBC$ 이다.

따라서 $\triangle ABE + \triangle ECD = 50 cm^2$ 이다. $\triangle ECD: \triangle ABE = 1: 4 = 10 cm^2: 40 cm^2$

 $\therefore \triangle ECD = 10cm^2$

18. 다음 그림과 같은 평행사변형 ABCD의 대각선 DB를 삼등분하는 점을 각각 P, Q라고 하자. □ABCD = 900cm²일 때, □APCQ의 넓이를 구하여라. (단, 단위는 생략한다.)



 답:

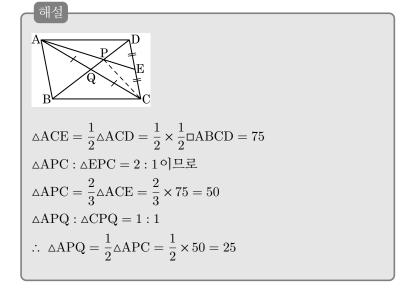
 ▷ 정답:
 300

 $\triangle APQ = \frac{1}{3}\triangle ABD = \frac{1}{3} \times \frac{1}{2}\Box ABCD = \frac{1}{6}\Box ABCD$ $\triangle CPQ = \frac{1}{3}\triangle CDB = \frac{1}{3} \times \frac{1}{2}\Box ABCD = \frac{1}{6}\Box ABCD$ $\Box APCQ = \triangle APQ + \triangle CPQ = \frac{1}{6}\Box ABCD + \frac{1}{6}\Box ABCD = \frac{1}{3}\Box ABCD$ $\therefore \Box APCQ = 300(cm^2)$

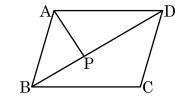
19. 다음 그림의 평행사변형 ABCD에서 점 E는 변 DC의 중점이고, $\overline{AP}: \overline{PE}=2:1$ 이다. 평행사변형의 넓이는 300일 때, ΔAPQ 의 넓이를 구하여라.

P E

답:▷ 정답: 25



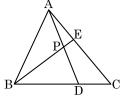
20. 다음 그림의 평행사변형 ABCD 의 넓이는 $70 \mathrm{cm}^2$ 이고 $\overline{\mathrm{BP}}$: $\overline{\mathrm{PD}}$ = 2:3 이다. $\Delta\mathrm{ABP}$ 의 넓이는?



- ① 5cm^2 ④ 21cm^2
- $2 10 \text{cm}^2$
- 314cm^2
- \bigcirc 25cm²

 $\triangle ABD = \frac{70}{2} = 35(cm^2) = \triangle ABP + \triangle ADP$ $2: 3 = \triangle ABP : \triangle APD$ $\therefore \triangle ABP = 35 \times \frac{2}{5} = 14(cm^2)$

21. 다음 그림에서 BD : CD = 2 : 1 , AE : CE = 2 : 3 , AP : DP = 1 : 1 이다. △ABC = 30 cm² 일 때, △APE의 넓이를 구하여라.



 답:
 cm²

 ▷ 정답:
 2 cm²

$\triangle APE = \triangle ABE - \triangle APB$ 이다.

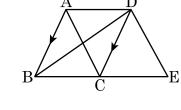
해설

 $\triangle ABE = 30 \times \frac{2}{5} = 12$

$$\triangle ABD = 30 \times \frac{2}{3} = 20$$
, $\triangle APB = \triangle ABD \times \frac{1}{2} = 10$

따라서
$$\triangle APE = \triangle ABE - \triangle APB = 12 - 10 = 2(\text{ cm}^2)$$

 ${f 22}$. 다음 그림에서 $\overline{
m AB}$ // $\overline{
m DC}$ 이고, $\Delta
m ABC=16cm^2$, $\Delta
m DBE=34cm^2$ 일 때, □ABED의 넓이는?

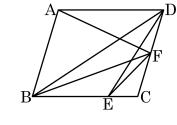


- \bigcirc 30cm² $45 \, \mathrm{cm}^2$
- \bigcirc 35cm² 50cm^2
- $3 40 \text{cm}^2$

 $\overline{AB} /\!/ \, \overline{DC}$ 이므로 $\triangle ABC = \triangle ABD = 16 (cm^2)$

 $\therefore \Box ABED = \triangle ABD + \triangle DBE$ $= 16 + 34 = 50(\text{cm}^2)$

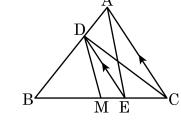
. 다음 그림은 평행사변형 ABCD 이다. 다음 중 옳은 것을 모두 고르면?



- $\triangle DBF = \triangle DEF$
- $\textcircled{4} \triangle ADB = \triangle AFB$

\bigcirc \triangle ADF = \triangle BDF ($\overline{\rm DF}$ 가 공통)

24. 다음 그림과 같은 △ABC에서 ĀC // DE이고, BC의 중점을 M이라한다. □ADME의 넓이가 10cm²일 때, △DBC의 넓이를 구하여라. (단, 단위는 생략한다.)



▷ 정답: 20

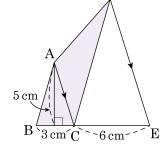
▶ 답:

 $\overline{
m DE}\,/\!/\,\overline{
m AC}$ 이므로 밑변과 높이가 같아 $_{\Delta}{
m DAE}=_{\Delta}{
m DEC}$ 이므로

해설

 $\Box ADME = \triangle DME + \triangle DAE = \triangle DME + \triangle DEC = \triangle DMC = 10(cm^2)$ $\overline{BM} = \overline{CM}$ 이므로 밑변과 높이가 같아 $\triangle DBM = \triangle DCM = 10(cm^2)$

 $\therefore \triangle DBC = 2 \times 10 = 20(\text{cm}^2)$



달: $\underline{\text{cm}^2}$ > 정답: $\frac{45}{2}\underline{\text{cm}^2}$

2 -----

 $\overline{\mathrm{AC}} /\!/ \overline{\mathrm{DE}}$ 이므로 $\triangle \mathrm{ACD} = \triangle \mathrm{ACE}$

 $\Box ABCD = \triangle ABC + \triangle ACD$ $= \triangle ABC + \triangle ACE$ $= \triangle ABE$

 $= \triangle ABE$

 $\therefore \Box ABCD = \triangle ABE = \frac{1}{2} \times 9 \times 5 = \frac{45}{2} (cm^2)$

26. 다음 그림에서 $\overline{BP}:\overline{CP}=\overline{CQ}:\overline{AQ}=1:3$ 이다. $\triangle APQ=24\,\mathrm{cm}^2$ 일 때, $\triangle ABC$ 의 넓 이를 구하여라.

▶ 답:

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $rac{128}{3}$ $m \underline{cm^2}$

△APC = $24 \times \frac{4}{3} = 32 \text{ cm}^2\text{)}$ ∴ △ABC = $32 \times \frac{4}{3} = \frac{128}{3} \text{ cm}^2\text{)}$

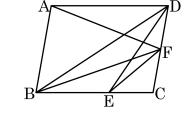
27. 다음 그림에서 점 M은 \overline{BC} 의 중점이고 \overline{AP} : $\overline{PC}=3:2$ 이다. $\triangle ABC=40\,\mathrm{cm^2}$ 일 때, $\triangle APM$ 의 넓이는?

APM의 넓이는?

- ① $4 \,\mathrm{cm^2}$ ② $8 \,\mathrm{cm^2}$ ③ $12 \,\mathrm{cm^2}$ ④ $16 \,\mathrm{cm^2}$ ⑤ $20 \,\mathrm{cm^2}$

 $\triangle ABM$ 과 $\triangle AMC$ 의 높이와 밑변의 길이가 같으므로, 두 삼각형의 넓이는 같다. $\triangle AMC = 20 cm^2 \ , \ \triangle AMP = 20 \times \frac{3}{5} = 12 (\ cm^2)$

28. 다음 그림은 평행사변형 ABCD 이다. 다음 보기 중 넓이가 가장 넓은 것을 골라라.(정답 2개)



 \bigcirc $\triangle ADF$ \bigcirc $\triangle ABD$ $\ \ \ \Box$ $\triangle {\rm BDF}$ △BFC □ △CDE ⊌ ∆ABF ▶ 답:

▶ 답:

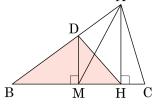
▷ 정답: □

▷ 정답: ⑭

밑변이 공통이면 높이가 높은 것이 넓이가 넓다. 평행사변형의 평행한 직선 $\overline{AB},\ \overline{DC}$ 에서 모두 밑변을 가지고

있으므로 밑변이 가장 긴 것을 찾고 그중 높이가 높은 것을 찾는다. 따라서 $\triangle ABD$, $\triangle ABF$ 가 가장 넓은 삼각형이다.

29. 다음 그림의 $\triangle ABC$ 에서 $\overline{AH} \perp \overline{BC}$, $\overline{\rm DM} \perp \overline{\rm BC}$, $\overline{\rm BM} = \overline{\rm CM} = 5$, $\overline{\rm AH} = 6$ 이라 할 때, △DBH의 넓이를 구하여 라.



답:

 $\underline{\rm cm^2}$

▷ 정답: 15 cm²

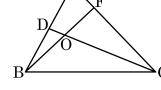
 $\overline{
m DM}$ 과 $\overline{
m AH}$ 는 한 직선 $\overline{
m BC}$ 에 수직인 두 직선이므로 $\overline{
m DM}\,/\!/\,\overline{
m AH}$ 밑변이 공통이고 높이가 같으므로 $\triangle \mathrm{DMH} = \triangle \mathrm{DMA}$

 $\therefore \triangle \mathrm{DBH} = \triangle \mathrm{DBM} + \triangle \mathrm{DMH} = \triangle \mathrm{BMA}$

 $\therefore \triangle DBH = \triangle AMC = \frac{1}{2} \times 5 \times 6 = 15 (\text{ cm}^2)$

 $\overline{\mathrm{BM}}=\overline{\mathrm{CM}}$ 이고 한 꼭짓점이 A 에서 만나므로 $\Delta\mathrm{BMA}=\Delta\mathrm{AMC}$

30. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AD}:\overline{DB}=1:1,\overline{DO}:\overline{OC}=1:6,$ $\overline{AF}:\overline{FC}=1:3$ 이다. $\triangle ABC$ 의 넓이가 560일 때, $\triangle COF$ 의 넓이를 구하여라.



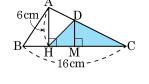
▷ 정답: 180

▶ 답:

 $\triangle CAD : \triangle CBD = 1 : 1$ 이므로 $\triangle CAD = \frac{1}{2} \triangle ABC = \frac{1}{2} \times 560 = 280$

2 2 \overline{AO} 를 그으면 $\triangle ADO: \triangle ACO = 1:6$ 이므로 $\triangle ACO = \frac{6}{7}\triangle CAD = \frac{6}{7}\times 280 = 240$ 또, $\triangle AOF: \triangle COF = 1:3$ 이므로 $\triangle COF = \frac{3}{4}\triangle ACO = \frac{3}{4}\times 240 = 180$

 $oldsymbol{31}$. 다음 그림에서 점 M 은 $\overline{
m BC}$ 의 중점이다. $\overline{\mathrm{AH}}=6\,\mathrm{cm},\,\overline{\mathrm{BC}}=16\,\mathrm{cm}$ 일 때, $\Delta\mathrm{DHC}$ 의 넓이를 구하여라.



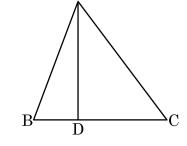
▶ 답: $\underline{\mathrm{cm}^2}$ ▷ 정답: 24<u>cm²</u>

 $\overline{\mathrm{AM}}$ 을 그으면 $\Delta\mathrm{DHM} = \Delta\mathrm{AMD}$ 이므로

해설

 $\triangle DHC = \triangle AMC = \frac{1}{2} \triangle ABC$ $= \frac{1}{2} \times \frac{1}{2} \times 16 \times 6$ $= 24 \text{ (cm}^2\text{)}$

32. 다음 그림에서 \overline{BD} : $\overline{CD}=1$: 2, $\triangle ABC=9$ 일 때, $\triangle ABD$ 의 넓이를 구하여라.

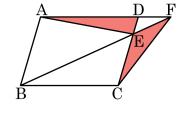


▷ 정답: 3

▶ 답:

 $\triangle ABD = 9 \times \frac{1}{1+2} = 3$

33. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{\rm DE}$: $\overline{\rm EC}=1$: 3이다. □ABCD의 넓이가 60일 때, $\triangle ADE + \triangle FEC$ 의 넓이를 구하여라.

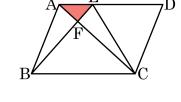


▶ 답:

▷ 정답: 15

 $\triangle ADE$ 와 $\triangle BCE$ 는 높이는 같고 밑변이 1:3이므로 $\triangle ADE:$ $\triangle BCE=1:3$ $\triangle ADE=\triangle ACD\times \frac{1}{1+3}=\frac{1}{2}\Box ABCD\times \frac{1}{4}$ $=\frac{1}{8}\Box ABCD$ $\triangle BCE=3\triangle ADE=\frac{3}{8}\Box ABCD$ $\overline{AF}/\!\!/ \overline{BC}$ 이므로 $\triangle FBC=\triangle DBC=\frac{1}{2}\Box ABCD$ $\triangle FEC=\triangle FBC-\triangle BCE=\left(\frac{1}{2}-\frac{3}{8}\right)\times\Box ABCD=\frac{1}{8}\Box ABCD$ $\therefore \triangle ADE+\triangle FEC=\frac{1}{4}\Box ABCD=\frac{1}{4}\times 60=15$

 ${f 34.}$ 다음 평행사변형 ABCD 에서 $\Delta {
m BFC}$ 의 넓이가 ${f 9,\ }\Delta {
m CDE}$ 의 넓이가 7 일 때, △AEF 의 넓이를 구하여라.



▶ 답: ▷ 정답: 2

해설

변 AD 와 BC 가 평행하므로

 $\triangle ABC = \triangle EBC, \ \triangle ABE = \triangle ACE,$ $\therefore \ \triangle ABF = \triangle ABC - \triangle FBC$ $= \triangle \mathrm{EBC} - \triangle \mathrm{FBC}$

 $= \triangle \mathrm{EFC}$ $\triangle AEF = x$, $\triangle ABF = \triangle EFC = y$ 라고 하면

 \triangle ACD = 7 + x + y $\triangle ABC = 9 + y$

 $\triangle ACD = \triangle ABC$ 이므로 7 + x + y = 9 + y

따라서 $\triangle AEF = x = 2$ 이다.

35. 다음 그림의 평행사변형 ABCD 에서 \overline{AP} 위의 임의의 점 Q 에 대하여 \overline{AQ} : $\overline{QP}=3:4$, □ABCD = 49cm^2 일 때, △QBC 의 넓이를 구하

▶ 답: ▷ 정답: 14 cm² $\underline{\mathrm{cm}^2}$

 $\overline{\mathrm{QD}}$, $\overline{\mathrm{PD}}$ 를 그으면 $\Delta \mathrm{AQD} = \frac{3}{7} \Delta \mathrm{APD}$

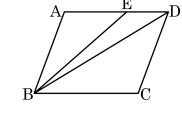
$$= \frac{3}{7} \times \frac{1}{2} \square ABCD$$
$$= \frac{3}{14} \square ABCD$$

$$=\frac{3}{14}\times 49=\frac{21}{2}$$

=
$$\frac{3}{14} \times 49 = \frac{21}{2} (\mathrm{cm}^2)$$

따라서 $\triangle \mathrm{QBC}$ 의 넓이는 $\frac{1}{2} \square \mathrm{ABCD} - \triangle \mathrm{AQD} = \frac{49}{2} - \frac{21}{2} = 14 (\mathrm{cm}^2)$ 이다.

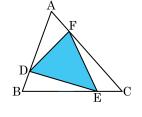
36. 다음 그림과 같은 평행사변형 ABCD의 넓이가 $50 \mathrm{cm}^2$ 이고, $\overline{\mathrm{AE}}:\overline{\mathrm{ED}}=3:2$ 일 때, $\Delta\mathrm{ABE}$ 의 넓이는?



- \bigcirc 12cm^2
- 315cm^2
- 4 20cm^2
- \bigcirc 25cm²

 $\triangle ABE + \triangle EBD = \frac{1}{2} \square ABCD$ $\therefore \triangle ABE = \frac{1}{2} \square ABCD \times \frac{3}{3+2} = 15 (cm^2)$

37. 다음 $\triangle ABC$ 에서 $\overline{AD}: \overline{DB} = \overline{BE}: \overline{EC} = \overline{CF}: \overline{FA} = 3:1$ 이다. $\triangle ADF = 6\,\mathrm{cm}^2$ 일 때, $\triangle DEF$ 의 넓이를 구하여라.



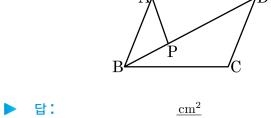
 답:

 ▷ 정답:
 14cm²

조ADF = $\frac{3}{4}$ \triangle ABF = $\frac{3}{4} \times \frac{1}{4}$ \triangle ABC = $\frac{3}{16}$ \triangle ABC \triangle ABC = $\frac{16}{3}$ \triangle ADF = $\frac{16}{3} \times 6 = 32$ (cm²) 마찬가지로 \triangle DBE = $\frac{3}{16}$ \triangle ABC, \triangle FEC = $\frac{3}{16}$ \triangle ABC \therefore \triangle DEF = $\frac{7}{16}$ \triangle ABC = $\frac{7}{16} \times 32 = 14$ (cm²)

 $\underline{\mathrm{cm}^2}$

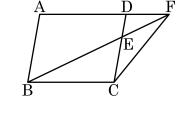
38. 다음 그림과 같은 평행사변형 ABCD 에서 \overline{BP} : \overline{DP} = 1 : 2 이다. □ABCD = 24cm² 일 때, △APD 의 넓이를 구하여라.



▷ 정답: 8 cm²

 $\triangle ABD = \frac{24}{2} = 12 (cm^2)$ $\triangle ABP$, $\triangle APD 는 높이가 같고, <math>\triangle ABP : \triangle APD = 1 : 2$ 이다.
따라서 $\triangle APD = 8cm^2$ 이다.

 $f{39}$. 다음 그림과 같은 평행사변형 $f{ABCD}$ 에서 $f{DE}: f{EC}=1:2$ 일 때, $\triangle ADE + \triangle FEC$ 의 값은 평행사변형 ABCD의 넓이의 몇 배인가?



- ① $\frac{1}{2}$ 바 ② $\frac{1}{3}$ 바 ③ $\frac{1}{5}$ 바 ④ $\frac{1}{7}$ 바 ⑤ $\frac{1}{10}$ 바

 ΔADE 와 ΔBCE 는 높이는 같고 밑변이 1:2이므로 $\Delta ADE:$ $\triangle BCE = 1:2$ $\triangle ADE = \triangle ACD \times \frac{1}{1+2} = \frac{1}{2} \Box ABCD \times \frac{1}{3} = \frac{1}{6} \Box ABCD$

 $\triangle BCE = 2 \triangle ADE = \frac{1}{3} \Box ABCD$

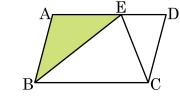
 $\overline{\mathrm{AF}} \, / \! / \, \overline{\mathrm{BC}}$ 이므로 $\triangle \mathrm{FBC} = \triangle \mathrm{DBC} = \frac{1}{2}$ $\square \mathrm{ABCD}$

 $\triangle FEC = \triangle FBC - \triangle BCE = \left(\frac{1}{2} - \frac{1}{3}\right) \times \square ABCD$

$$\therefore \ \Delta ADE + \Delta FEC = \frac{1}{3}\Box ABCD$$

 $= \frac{1}{6} \square ABCD$

40. 다음 그림과 같은 평행사변형 ABCD에서 \overline{AE} : $\overline{ED}=3:2$ 이고 □ABCD =60cm 2 일 때, △ABE의 넓이는?



- ① 18cm^2 ④ 30cm^2
- 22cm^2
- $3 26 \text{cm}^2$
- **... 5**00ch
- \bigcirc 34cm²

