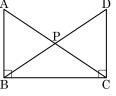
1. 다음 그림과 같은 두 직각삼각형에서 \overline{AC} 와 $\overline{\mathrm{BD}}$ 의 교점을 P라 할 때, $\overline{\mathrm{AB}}=\overline{\mathrm{DC}}$, $\overline{\mathrm{AC}}=$ $\overline{
m DB}$ 이면 $\Delta
m PBC$ 는 어떤 삼각형인가?



- ① 정삼각형
- ② 직각이등변삼각형 ④ 직각삼각형
- ③ 이등변삼각형 ⑤ 예각삼각형

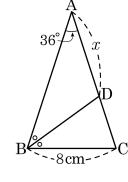
해설

△ABC 와 △DCB 에서 $i\)\overline{AC}=\overline{DB}$ ii) $\angle ABC = \angle DCB = 90^{\circ}$

 $\mathrm{iii})\overline{\mathrm{AB}} = \overline{\mathrm{DC}}$ i), ii), iii) 에 의해 △ABC ≡ △DCB

따라서 ∠DBC = ∠ACB 이므로 ΔPBC 는 이등변삼각형

2. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB}=\overline{AC}$ 인 이등변삼각형이다. $\angle B$ 의 이등분선이 \overline{AC} 와 만나는 점을 D 라 할 때, x 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

정답: 8 cm

답:

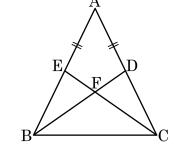
해설

36° 8cm 72° B 36° 72° C ∠A = 36° 이고, △ABC 가 이등변삼각형이므로 ∠B = ∠C = $\frac{1}{2} \times (180^{\circ} - 36^{\circ}) = 72^{\circ}$ 이다.

같으므로, 이등변삼각형이다. 따라서 $\overline{BC}=\overline{BD}=\overline{AD}=8\,\mathrm{cm}$ 이다.

 $\angle ABD = \angle CBD = 36^\circ$ 이므로 $\triangle ABD$ 는 두 내각의 크기가 같게 되고, $\angle BCD = \angle BDC = 72^\circ$ 이므로 $\triangle BCD$ 도 두 내각의 크기가

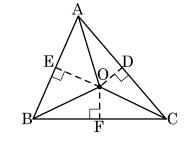
3. 다음 그림과 같은 이등변삼각형ABC 에서 $\overline{\rm AD}=\overline{\rm AE}$ 일 때, $\Delta \rm FBC$ 는 어떤 삼각형인지 구하여라.



► 답:▷ 정답: 이등변삼각형

해설
다음 그림에서 $\triangle ADB \equiv \triangle AEC$ (SAS 합동: $\overline{AD} = \overline{AE}$, $\overline{AB} = \overline{AC}$, $\angle A \vdash \overline{SS}$)이므로 $\angle EBF = \angle DCF$ 이다. A E \overline{AC} \overline{C} \overline

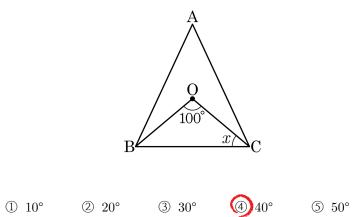
4. 점 O 가 \triangle ABC 의 외심일 때, 합동인 삼각형이 <u>아닌</u> 것을 모두 고르면?



 \bigcirc \triangle OBF \equiv \triangle OCF

 $\triangle AOE \equiv \triangle BOE$, $\triangle OBF \equiv \triangle OCF$, $\triangle AOD \equiv \triangle COD$ 이다.

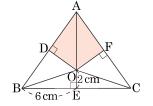
5. 다음 그림에서 점 O 가 \triangle ABC 의 외심일 때, $\angle x$ 의 크기는?



 $\overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이므로 $\Delta\mathrm{OBC}$ 는 이등변삼각형이다.

따라서 두 밑각의 크기가 같으므로 $\angle \mathrm{OBC} = \angle \mathrm{OCB}$ $\therefore 2x + 100 = 180, \ x = 40$ 이다.

 다음 그림에서 점 O는 △ABC의 외심이다.
 △ABC = 50 cm² 일 때, □ADOF의 넓이를 구하여라.



 답:
 cm²

 ▷ 정답:
 19 cm²

 $\triangle OBE = \frac{1}{2} \times 6 \times 2 = 6 \text{ (cm}^2\text{)}$

또한, △OBE ≡ △OCF, △OCF ≡ △OAF, △OAD ≡ △OBD(RHS 합동) 이므로

 $\Delta OBE + \Delta OCF + \Delta OAD = \frac{1}{2} \Delta ABC$ $= \frac{1}{2} \times 50$ $= 25 (cm^{2})$

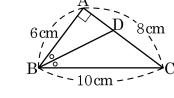
$$2$$

$$= 25 (cm$$
∴ $\Box ADOF = \triangle AOD + \triangle AOF$

$$= \triangle AOD + \triangle COF$$

= 25 - 6
= 19(cm²)

7. 다음 그림과 같은 직각삼각형 ABC 에서 $\angle B$ 의 이등분선과 \overline{AC} 가만나는 점을 D 라 하자. $\overline{AB}=6\mathrm{cm},\ \overline{BC}=10\mathrm{cm},\ \overline{AC}=8\mathrm{cm}$ 일 때, \overline{AD} 의 길이를 구하여라.(단, 단위는 생략한다.)



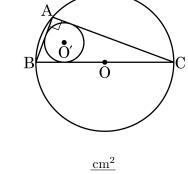
답:

▷ 정답: 3

점 D 에서 \overline{BC} 에 내린 수선의 발을 E 라 하면

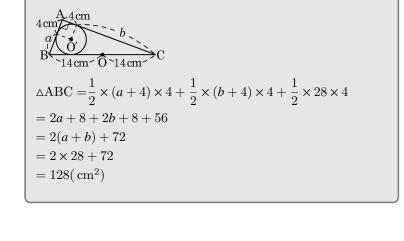
 $\triangle ABD \equiv \triangle EBD(RHA합동)$ 이므로 $\overline{AD} = \overline{ED}$ 이다. $\triangle ABC = \triangle ABD + \triangle DBC$ 이므로 $\overline{AD} = \overline{ED} = x \mathrm{cm}$ 라 하면 $\frac{1}{2} \times 6 \times 8 = \frac{1}{2} \times 6 \times x + \frac{1}{2} \times 10 \times x$ 이다. 따라서 $\overline{AD} = x = 3 \mathrm{cm}$ 이다.

8. 다음 그림에서 원 O, O' 는 각각 ΔABC 의 외접원, 내접원이다. 원 O, O' 의 반지름의 길이가 각각 14cm, 4cm 일 때, ΔABC 의 넓이를 구하여라.

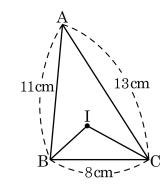


 ▶ 정답:
 128 cm²

▶ 답:



삼각형ABC 에서 점 I 는 내심이고 \triangle ABC = $48\,\mathrm{cm}^2$ 일 때, \triangle IBC 의 넓이는? 9.



- $4 16\,\mathrm{cm}^2$
- $212\,\mathrm{cm}^2$ \bigcirc 18 cm²
- $3 14 \,\mathrm{cm}^2$

$$\triangle ABC = \frac{1}{2}r(a+b+1)$$

$$\triangle ABC = \frac{1}{2}r(a+b+c)$$

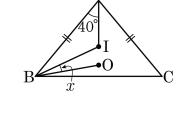
$$= \frac{1}{2}r(11+13+8) = 48$$

$$r = 3 \text{ cm}$$

$$\triangle IBC = \frac{1}{2} \times 3 \times 8 = 12 \text{ (cm}^2\text{)}$$

$$\Delta IBC = \frac{1}{2} \times 3 \times 8 = 12 \text{ cm}$$

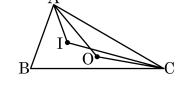
 ${f 10}$. 다음 그림에서 I, O 는 ${f \overline{AB}}={f \overline{AC}}$ 인 이등변삼각형의 내심, 외심일 때 $\angle x$ 의 크기를 구하여라.



▷ 정답: 15 º

답:

△ABC 의 외심이 점 O일 때, $\frac{1}{2}$ $\angle BOC = \angle A$ 이므로 $\angle A = 80$ °, $\angle BOC = 160$ °이다. △ABC의 내심이 점 I일 때, $\frac{1}{2}$ $\angle A + 90$ ° = $\angle BIC$ 이므로 $\angle \mathrm{BIC} = \frac{1}{2} \times 80\,^{\circ} + 90\,^{\circ} = 130\,^{\circ}$ 이다. \triangle OBC 도 이등변삼각형이므로 \angle OBC = $10\,^\circ$ 이다. 또, \angle IBC = $\frac{1}{2}$ \angle ABC = $\frac{1}{2}$ \times 50 $^\circ$ = $25\,^\circ$ 이다. 따라서 ∠OBI = ∠IBC - ∠OBC = 25° - 10° = 15°이다. 11. 다음그림에서 삼각형 ABC 내부의 점 O 와 I 는 각각 \triangle ABC 의 외심과 내심이다. $\angle AOC$ – $\angle AIC$ = 15° 일 때, $\angle OAC$ 의 크기= () $^\circ$ 이다. 빈 칸을 채워 넣어라.



▶ 답:

▷ 정답: 20

 $\triangle ABC$ 의 외심이 점 O 일 때, $\frac{1}{2}\angle AOC = \angle B$, $\triangle ABC$ 의 내심이 점 I 일 때, $\frac{1}{2}$ \angle B + 90° = \angle AIC 이므로 $\angle AOC - \angle AIC = 2\angle B - \left(\frac{1}{2}\angle B + 90^\circ\right) = 15^\circ$ 일 때, $\angle B = 70^\circ$

이다. $\angle B=70^\circ$ 이고, $\angle AOC=140^\circ$ 이다. (: 점 O는 외심) , $\triangle OAC$ 도 이등변삼각형이므로 $\angle OAC=20^\circ$ 이다.

- **12.** 다음 중 삼각형의 내심과 외심에 대한 설명으로 옳지 <u>않은</u> 것은?
 - ① 내심에서 세 변에 이르는 거리가 같다. ② 외심은 항상 삼각형의 외부에 있다.
 - ③ 내심은 항상 삼각형의 내부에 있다.
 - ④ 이등변삼각형의 외심과 내심은 꼭지각의 이등분선 위에 있다.
 - ⑤ 외심에서 세 꼭짓점에 이르는 거리가 같다.

② 삼각형의 외심의 위치는 예각삼각형은 내부, 직각삼각형은

빗변의 중점, 둔각삼각형은 외부에 있다.