1. 이차함수 $y = ax^2$ 의 그래프가 점 (2, -8) 을 지날 때, a 의 값을 구하여라.

답: _____

- 2. 이차함수 $y = ax^2$ 의 그래프가 두 점 (4, 8), $\left(b, \frac{9}{2}\right)$ 를 지난다. 이함수와 x 축 대칭인 이차함수가 (b, c) 를 지날 때, c 의 값은?(단, b < 0)
 - ① -2 ② $-\frac{5}{2}$ ③ 3 ④ $\frac{7}{2}$ ⑤ $-\frac{9}{2}$

 $oldsymbol{3}$. 이차함수 $y=2x^2$ 의 그래프를 y 축의 방향으로 3 만큼 평행이동시켰을 때 꼭짓점의 좌표를 구하여라. ① (0,0) ② (0,-2) ③ (3,0)

(0,3) (-2,0)

4. 이차함수 $y = -2x^2 + kx - 3k$ 의 그래프가 k 의 값에 관계없이 항상 지나는 점의 좌표를 구하여라.

답: _____

5. $y = 2x^2$ 의 그래프를 x 축의 방향으로 -3 만큼, y 축의 방향으로 -2 만큼 평행이동시킨 그래프의 x 절편과 y 절편을 연결한 삼각형의 넓이를 구하면?

① 8 ② 10 ③ 12 ④ 14 ⑤ 16

세 점 (0, -5) , (5, 0) , (2, 3) 을 지나는 포물선의 꼭짓점의 좌표를 **6.** 구하여라.

▶ 답: _____

7. 세 점 (1, -12), (0, -5), (-1, 0) 을 지나는 이차함수의 최댓값 또는 최솟값을 구하여라.

▶ 답: 최댓값 : _____

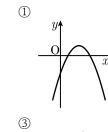
8. 이차함수 $y = -2x^2 + 4ax - a^2 - 6a + 6$ 의 최댓값을 m 이라고 할 때, m 의 최솟값을 구하여라.

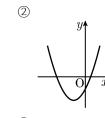
답: _____

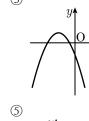
이차함수 $y=2x^2+ax+b$ 가 x=1 에서 최솟값 -3을 가질 때, a-b9. 의 값을 구하면?

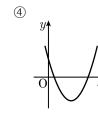
① 0 ② -2 ③ -4 ④ -3 ⑤ 6

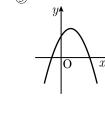
구하여라. > 답: _____

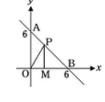

10. 이차함수 $y = x^2 + 2ax + a - 3$ 의 최솟값을 m 이라 할 때, m 의 최댓값을

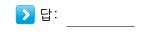

11.	다음 그림과 같이 20m인 철망으로 직사각형의 모양의 닭장을 만들려고 한다. 넓이가 최대가 되도록 하는 x 의 값은?			
	① 3 m	② 4 m	3 5 m	


④ 6 m ⑤ 7 m

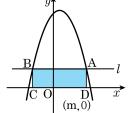

12. 이차함수 $y = ax^2 + bx + c$ 의 그래프가 다음 그림과 같을 때, 다음 중에서 이차함수 $y = bx^2 + cx + a$ 의 그래프는?


O





13. 아래의 그림과 같이 두 점 A, B 를 지나는 직선 위의 한 점 P 에서 x 축에 내린 수선의 발을 M(a,0) 이라 하자. $\triangle POM$ 의 넓이가 4일 때 a 의 값을 구하여라. (단, 점 P 는 제1 사분면 위의 점이다.)



▶ 답: ____

14. 이차함수 $y = -x^2 + 2x + 5$ 의 그래프와 x 축으로 둘러싸인 도형에 내접하고, 한 변이 x 축 위에 오는 직사각형을 만들 때, 이 직사각형의 둘레의 길이의 최댓값을 구하여라.

15. $y = -x^2 + x + 6$ 의 그래프와 x 축에 평행인 직선 l 이 만나는 두 점 A, B 에서 x 축에 수선 의 물레의 길이의 최댓값은? $\left(\frac{1}{2} < m < 3\right)$

- ① $\frac{11}{2}$ ② $\frac{31}{4}$ ③ 10 ④ $\frac{49}{4}$ ⑤ $\frac{29}{2}$