- 1. $a \neq 0$ 이고, a, b가 정수일 때, 다음 중 $\frac{b}{a}$ 의 꼴로 나타낼 수 <u>없는</u> 것은? ② -2 ④ $\frac{3}{2}$ ① 0 ③ 0.17
 - \bigcirc 1.020030004 · · ·

⑤ 1.020030004 · · · 은 순환하지 않는 무한소수는 유리수가 아니

2. 분수 $\frac{7}{2 \times x}$ 을 유한소수로 나타낼 수 있을 때, 다음 중 x의 값이 될 수 <u>없는</u> 것은?

① 4 ② 5 ③ 6 ④ 7 ⑤ 8

분모가 소인수 2와 5로만 이루어진 수는 유한소수로 나타낼 수

따라서 $2 \times 2 = 4$, 5, $2 \times 2 \times 2 = 8$ 은 올 수 있고,

 2×3 즉, 6은 x값이 될 수 없다.

7은 유한소수가 불가능하지만, 분자에 7이 있으므로 약분되어 가능하다.

- 3. 다음에서 순환소수를 나타내는 방법이 옳은 것은?
 - ① $0.333 \cdots = 0.33$ ③ $0.0060606 \cdots = 0.0060$
- $\bigcirc 1.030303 \dots = 1.\dot{0}\dot{3}$
- $3 \ 2.3117117 \dots = 2.31\dot{1}\dot{7}$

 $\bigcirc 0.333 \dots = 0.3$

- $3 \ 0.0060606 \cdots = 0.006$
- $4 \ 2.020202 \dots = 2.02$

다음 중 옳지 <u>않은</u> 것은? 4.

해설

- ① $0.\dot{4}\dot{2} < 0.\dot{4}$ ② $1.\dot{7}\dot{9} = \frac{178}{99}$ ③ $0.\dot{6} > 0.\dot{6}\dot{0}$ ④ $9.\dot{9} = 10$ ⑤ $10.0\dot{4} = \frac{994}{90}$

다음은 $\frac{9}{20}$ 를 유한소수로 나타내는 과정이다. \square 안에 알맞은 수를 차례대로 구하여라.

 $\frac{9}{20} = \frac{9}{2^2 \times 5} = \frac{9 \times \square}{2^2 \times 5 \times 5} = \frac{45}{100} = \square$

▶ 답: ▶ 답:

▷ 정답: 5 ▷ 정답: 0.45

분모를 소인수분해하면 $2^2 \times 5$ 이므로 10 의 거듭제곱의 꼴이

되도록 분모, 분자에 각각 5 를 곱한다. $\frac{9}{20} = \frac{9}{2^2 \times 5} = \frac{9 \times 5}{2^2 \times 5 \times 5} = \frac{45}{100} = 0.45$

6. $\frac{3\times11}{2\times5^2\times x}$ 이 유한소수일 때, 20 이하의 소수 x의 개수를 구하여라.

▷ 정답: 4개

▶ 답:

20 이하의 소수는

2, 3, 5, 7, 11, 13, 17, 19이고

 $\frac{3 \times 11}{2 \times 5^2 \times x}$ 가 유한소수가 되는 x는 2, 3, 5, 11의 4개이다.

7. 다음 순환소수 중 정수인 것을 모두 구하면?

① $2.\dot{9}$ ② $4.\dot{6}$ ③ $5.\dot{0}\dot{9}$ ④ $1.\dot{9}$ ⑤ $3.\dot{4}$

해설
$$①2.\dot{9} = \frac{29-2}{9} = \frac{27}{9} = 3 \quad (정수)$$
② $4.\dot{6} = \frac{46-4}{9} = \frac{42}{9} = \frac{14}{3}$
③ $5.\dot{0}\dot{9} = \frac{509-5}{99} = \frac{504}{99} = \frac{56}{11}$
④ $1.\dot{9} = \frac{19-1}{9} = \frac{18}{9} = 2 \quad (정수)$
⑤ $3.\dot{4} = \frac{34-3}{9} = \frac{31}{9}$

해설

$$3 \cdot 5.09 = \frac{509 - 5}{200} = \frac{504}{200} = \frac{56}{11}$$

99 99 11
(4)
$$1\dot{9} = \frac{19-1}{9} = \frac{18}{9} = 2$$
 (정수

8. $\frac{4}{7}$ 를 소수로 나타낼 때, 소수 100 번째 자리의 숫자를 구하여라.

▶ 답:

▷ 정답: 4

 $\dfrac{4}{7}=0.571428571428\cdots$ 이므로 6 개의 숫자가 반복된다. 따라서 $100=6\times 16+4$ 이므로 100 번째 자리의 숫자는 4 이다.

9. $x = 0.1\dot{6}$ 일 때, $x - \frac{1}{1 + \frac{1}{x}}$ 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $\frac{1}{42}$

해설 $x = \frac{15}{90} = \frac{1}{6}$ (준식) $= \frac{1}{6} - \frac{1}{1+6} = \frac{1}{6} - \frac{1}{7} = \frac{1}{42}$

- **10.** 순환소수 $34.0\dot{8}7\dot{2} = x$ 를 분수로 고칠 때, 필요한 식은?
 - ① 1000x x③ 1000x - 10x
- ② 10000x x
- \bigcirc 10000x 1000x
- 4)10000x 10x

소수점 아랫부분이 같아지도록 10 의 거듭제곱을 곱한다.

해설

그러므로 10000x - 10x이다.

- 11. 기약분수 A = 순환소수로 나타내는데, 연우는 분자를 잘못 보아서답이 $0.\dot{4}$ 가 되었고, 지우는 분모를 잘못 보아서 답이 $0.\dot{4}\dot{1}$ 이 되었다. 이 때, 기약분수 A를 구하면?
- ① $\frac{40}{901}$ ② $\frac{41}{90}$ ③ $\frac{40}{99}$ ④ $\frac{41}{9}$ ⑤ $\frac{4}{9}$

연우: $0.\dot{4} = \frac{4}{9}$, 지우: $0.\dot{4}\dot{1} = \frac{41}{99}$ 따라서 처음의 기약분수는

 $\frac{($ 지우가 본 분자 $)}{($ 연우가 본 분모 $)} = \frac{41}{9} = A$ 이다.

- 12. 유리수 $\frac{1}{10}$, $\frac{1}{11}$, $\frac{1}{12}$, $\frac{1}{13}$,, $\frac{1}{99}$, $\frac{1}{100}$ 중에서 유한소수는 모두 몇 개인가?
 - ① 8개 ② 9개 ③ 10개 ④ 11개 ⑤ 12개

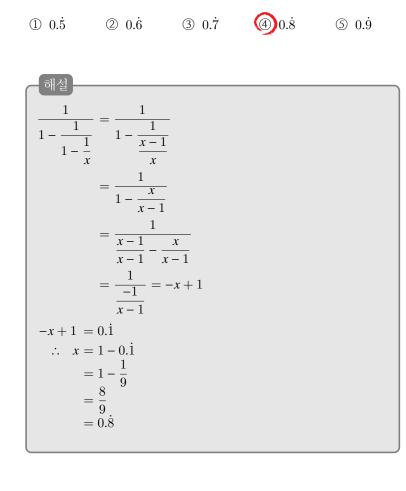
분모가 2의 거듭제곱으로만 $2^4,\ 2^5,\ 2^6$ 분모가 5의 거듭제곱으로만 5^2

2와 5의 거듭제곱으로만 2×5, 2²×5, 2³×5, 2⁴×5, 2×5², 2²×5²
∴ 10개

13. $\frac{1}{2}$ 과 $\frac{7}{10}$ 사이의 분수 중 분모가 30 이고 분자가 자연수이면서 유한소수로 나타낼 수 있는 분수를 구하여라.

▶ 답:

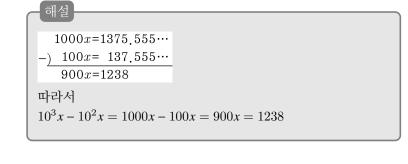
ightharpoonup 정답: $rac{18}{30}$


해설 $\frac{1}{2} = \frac{15}{30} < \frac{x}{30} < \frac{7}{10} = \frac{21}{30}$ x = 15 < x < 21 인 3의 배수이므로 18이다.

- **14.** 분수 $\frac{2}{7}$ 의 소수 n 번째 자리의 수를 X_n 이라 할 때, $X_1 + X_2 + \dots + X_{50}$ 의 값은?
 - 226 ① 218 ③ 231 ④ 238 ⑤ 239

 $rac{2}{7} = 0.285714285 \dots = 0.285714$ 이므로 순환마디의 숫자 6개 50 = 6 × 8 + 2 이므로 $X_1 + X_2 + \dots + X_{50} = (2+8+5+7+1+4) \times 8 + (2+8) = 226$ **15.** 다음 식을 만족하는 x 의 값을 구하면?

$$\frac{1}{1 - \frac{1}{1 - \frac{1}{x}}} = 0.\dot{1}$$


① $0.\dot{5}$ ② $0.\dot{6}$ ③ $0.\dot{7}$ ④ $0.\dot{8}$ ⑤ $0.\dot{9}$

16. x = 1.375 일 때, $10^3 x - 10^2 x$ 를 구하여라.

답:

▷ 정답: 1238

17. 다음 식을 만족하는 0 이 아닌 숫자 a,b,c,d,e 의 합을 구하면?

 $0.ab\dot{c}d\dot{e}=\frac{abcde-ab}{99900}=$ 2430199900

① 9

216

③ 24 ④ 28

⑤ 31

 $0.ab\dot{c}d\dot{e} = \frac{24301}{99900}$ 이므로 ab = 24 이다. 따라서 24301 = abcde - 24

abcde = 24301 + 24 $\therefore abcde = 24325$

 $\therefore a+b+c+d+e=16$

- **18.** 부등식 $3.9 < x < \frac{43}{7}$ 을 만족하는 자연수 x 의 값을 모두 합하면?
 - ② 11 ③ 13 ④ 18 ⑤ 20 ① 9

 $\frac{36}{9} < x < \frac{43}{7}$ 이므로 만족하는 x 값은 5, 6 이다. 따라서 x 값의 합은 11 이다.

- **19.** 다음 중 유리수 <u>아닌</u> 것을 모두 고르면?
 - ① $0, 1, 2, 3, \cdots$
- ② 2.5, $-\frac{5}{9}$ ④ 무한소수

- ③ 유한소수 ⑤ -1.5, -1/3, 0, 2.4,π

④ 순환하지 않는 무한소수는 유리수가 아니다.

- ⑤ π 는 순환하지 않는 무한소수이다.

20. 100 보다 작은 자연수 x 에 대하여, $\frac{x}{132}$ 를 기약분수로 나타내면 $\frac{3}{a-x}$ 이 되고, 이 분수는 유한소수이다. 이 때, 자연수 a 의 값을 구하여라.

▶ 답:

▷ 정답: 103

 $\frac{x}{132} = \frac{x}{2^2 \times 3 \times 11} = \frac{x}{9} + \frac{x}{132} + \frac{x}{2^2 \times 3 \times 11} = \frac{x}{2^2 \times 3 \times 11} + \frac{x}{2^2 \times 3 \times 11} = \frac{x}{4} + \frac{x}{2^2 \times 3 \times 11} = \frac{1}{4} + \frac{x}{2^2 \times 3 \times 11} = \frac{1}{2^2 \times 3 \times 11} = \frac{1}{2^2 \times 3 \times 11} = \frac{1}{2^2 \times 3 \times 11} = \frac{3}{4} + \frac{x}{2^2 \times 3 \times 11} = \frac{3}{4} + \frac{x}{2^2 \times 3 \times 11} = \frac{3}{4} + \frac{3}{2^2 \times 3 \times 11} = \frac{3}{2^2 \times 3 \times$

21. 자연수 n 에 대하여 a_n 을 $1^2+2^2+3^2+\cdots+n^2$ 의 일의 자리의 숫자라고 정의할 때, 소수 $0.a_1a_2a_3\cdots a_n\cdots$ 의 순환마디의 숫자의 갯수를 구하여라.

답:

▷ 정답: 20

(1² + 2² + 3² + ··· + 10²의 일의 자리의 숫자) = 5

 $(11^2+12^2+13^2+\cdots+20^2$ 의 일의 자리의 숫자) = 5 따라서, $(1^2+2^2+3^2+\cdots+20^2$ 의 일의 자리의 숫자) = 0 이 되어 n=21 이후로는 $1^2,1^2+2^2,\cdots$ 의 일의 자리의 숫자가 다시 반복된다. 즉, $a_{21}=a_1,a_{22}=a_2,a_{23}=a_3,\cdots$ 이므로 소수

즉, $a_{21} = a_1, a_{22} = a_2, a_{23} = a_3, \cdots$ 이므로 조ㅋ $0.a_1a_2a_3\cdots a_n\cdots$ 는 순환소수이고 순환마디는 $a_1a_2a_3\cdots a_{20}$ 의 20 개의 숫자이다.

- **22.** 어떤 기약분수를 소수로 나타내는데 A 는 분자를 잘못 보고 계산하여 $0.\dot{7}\dot{2}$ 가 되었고 B 는 분모를 잘못 보고 계산하여 $0.78\dot{6}$ 이 되었다. 바르게 고친 답은?
 - ① $5.\dot{3}\dot{2}$ ② $5.\dot{3}\dot{3}$ ③ $5.\dot{3}\dot{4}$ ④ $5.\dot{3}\dot{5}$ ⑤ $5.\dot{3}\dot{6}$

 $A:0.\dot{7}\dot{2}=\frac{72}{99}=\frac{8}{11},\,B:0.78\dot{6}=\frac{708}{900}=\frac{59}{75}$ A 는 분모를, B 는 분자를 바르게 보았으므로 기약분수는 $\frac{59}{11}$

이고, 순환소수로는 5.ĠĠ 이다.

23. 2.009 – 2.009 를 계산한 값의 소수점 아래 2009 번째 자리의 숫자를 구하여라.

■ 답:

▷ 정답: 8

해설

순환소수를 풀어서 계산하면

2.009 - 2.009 = $\frac{2007}{999} - \frac{1989}{990}$ = $\frac{-81}{990 \times 999}$ = -0.0000819 소수점 아래의 2009 번째 숫자는 순환마디의 2008 번째 숫자와

이때, $2008 = 6 \times 334 + 4$ 이므로 구하는 숫자는 순환마디의 4 번째 숫자 8 이다. **24.** 어떤 자연수에 $1.0\dot{4}$ 를 곱해야 할 것을 잘못하여 1.04 를 곱했더니 정답과 오답의 차가 $0.\dot{4}$ 가 되었다. 그 자연수를 구하여라.

답:▷ 정답: 100

7 02: 10

 $x \times 1.0\dot{4} - x \times 1.04 = 0.\dot{4}$ $x \times \left(\frac{94}{90} - \frac{104}{100}\right) = \frac{4}{9}$ $x \times \frac{4}{900} = \frac{4}{9}$ $\therefore x = 100$

25. 서로 다른 한 자리 자연수 a, b 에 대하여 기약분수 $\frac{a}{b \times 111} = c$ 라 할 때, 자연수 9990c 의 최솟값을 구하여라.

답:

▷ 정답: 10

 $9990c = \frac{a}{b \times 111} \times 9990 = \frac{90a}{b} = \frac{2 \times 3^2 \times 5 \times a}{b}$ 이 때, $\frac{a}{b \times 111}$ 가 기약분수이므로 a,b 는 서로소이고, $\frac{2 \times 3^2 \times 5 \times a}{b}$ 가 자연수가 되려면 b 는 2 의 약수이거나 3 의 약수, 5의 약수 또는 9 의 약수이어야 한다. 따라서 b = 9 , a = 1 일 때 $\frac{2 \times 3^2 \times 5 \times a}{b}$ 는 최솟값 10 을 가진다.