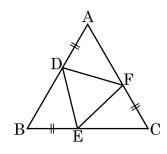
1. 다음 그림에서 ΔABC 는 정삼각형이고 $\overline{AD} = \overline{BE} = \overline{CF}$ 일 때, ΔDEF 는 어떤 삼각형인지 구하여라.



답:

▷ 정답: 정삼각형

 $\overline{AD} = \overline{BE} = \overline{CF} \cdots \bigcirc$

 $\overline{AF} = \overline{DB} = \overline{EC} \cdots \bigcirc$

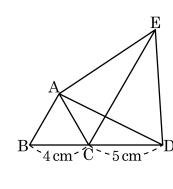
 $\angle DAF = \angle DBE = \angle ECF = 60^{\circ} \cdots \bigcirc$

①, ②, ② 에서

△ADF ≡ △BED ≡ △CFE(SAS합동) 이므로

FD = DE = EF ∴ △DEF 는 정삼각형 ① $\overline{BD} = \overline{CE}$ ③ $\angle BAD = \angle CAE$

2.



아래 그림에서 $\triangle ABC$ 는 정삼각형이다. 변 BC 의 연장선 위에 점 D

를 잡고 \overline{AD} 를 한 변으로 하는 정삼각형 \overline{ADE} 를 그린다. $\overline{BC} = 4cm$

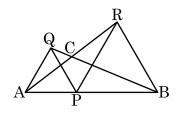
 $\overline{CD} = 5$ cm 일 때, 다음 중 옳지 않은 것은?

$$\triangle ACD \equiv \triangle ACE$$

 \bigcirc $\angle AEC = \angle ADB$

 \bigcirc \triangle BAD \equiv \triangle CAE

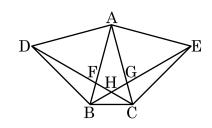
3. 다음 그림에서 \triangle APQ, \triangle BPR 는 정삼각형이고, \overline{AR} 와 \overline{BQ} 의 교점이 C 일 때 다음 설명 중 옳은 것을 고르면?



- ① △APQ ≡ △BPR (SAS 합동)
- ② △APR ≡ △QPB (ASA 합동)
- \bigcirc $\angle QPR = 120^{\circ}$
- \bigcirc $\angle APR = \angle QPB = 60^{\circ}$

 $\overline{AP} = \overline{QP}$, $\overline{PR} = \overline{PB}$, $\angle APR = \angle QPB = 120^{\circ}$ 이므로 $\triangle APR \equiv \triangle QPB$ (SAS 합동)

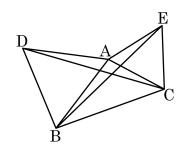
다음 그림은 $\overline{AB} = \overline{AC}$, $\angle A = 30^\circ$ 인 이등변삼각형의 \overline{AB} 와 \overline{AC} 를 한 변으로 하는 정삼각형 ABD 와 ACE 를 그린 것이다. $\angle DBC$ 의 크기를 구하면?



 $\angle ABC = \angle ACB = 75^{\circ}$

 $\therefore \angle DBC = \angle DBA + \angle ABC = 60^{\circ} + 75^{\circ} = 135^{\circ}$

5. 삼각형 ABC의 두 변 \overline{AB} , \overline{AC} 를 각각 한 변으로 하는 정삼각형 DBA 와 ACE를 그렸을 때, 다음 중 옳지 않은 것은?

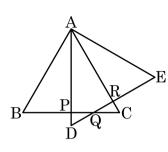


- \bigcirc $\angle DAC = \angle BAE$
- \bigcirc \triangle ADC \equiv \triangle ABE

$$\bigcirc$$
 $\overline{AB} = \overline{AC}$

4 $\angle ACD = \angle AEB$

 6. 다음 그림은 합동인 두 정삼각형 ABC, ADE 를 겹쳐 놓은 것이다. 다음 중 옳지 <u>않은</u> 것은?



① $\angle ABP = \angle AER$

② $\angle APB = \angle ARE$

 $\overline{AP} = \overline{AR}$

해설 _

 $\angle BAC = \angle BAP + \angle PAC = 60^{\circ}$ $\angle DAE = \angle DAR + \angle RAE = 60^{\circ}$ 이므로

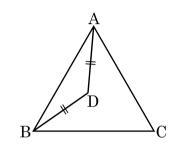
 $\angle BAP = \angle RAE \ (\because \angle PAC = \angle DAR \) \cdots \bigcirc$ $\angle ABP = \angle AER = 60^{\circ} \cdots \bigcirc$

| AB = AE ···ⓒ ¬, ⓒ, ⓒ에 의해

△ABP ≡ △AER (ASA 합동)

따라서 $\overline{AP} = \overline{AR}$, $\overline{BP} = \overline{ER}$ 이다.

7. 다음 그림과 같은 정삼각형 ABC 에서 $\overline{AD}=\overline{DB}$ 일 때, $\angle ACD$ 의 크기를 구하여라.



- 답:
- ▷ 정답: 30°

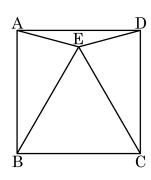
-· 해설 · △BCD 와 △ACD 에서

 $\overline{\mathrm{BC}} = \overline{\mathrm{AC}}$, $\overline{\mathrm{BD}} = \overline{\mathrm{AD}}$, $\overline{\mathrm{CD}}$ 는 공통이므로

△BCD ≡ △ACD (SSS 합동)

 $\therefore \angle ACD = \angle BCD = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$

8. 다음 그림에서 $\square ABCD$ 가 정사각형이고 $\triangle EBC$ 가 정삼각형이면 $\triangle EAB \equiv \triangle EDC$ 이다. 이 때, 사용된 삼각형의 합동조건은?



① SSS 합동

해설

④ AAA 합동

⑤ RHS 합동

SAS 합동

③ ASA 합동

□ABCD가 정사각형이므로 AB = DC

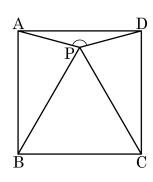
ΔEBC가 정삼각형이므로 EB = EC, ∠EBC = ∠ECB = 60°

따라서 ∠ABE = 90° - ∠EBC = 30°

∠DCE = 90° - ∠ECB = 30°

따라서 SAS합동이다.

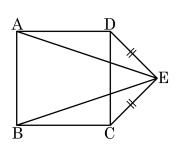
9. 다음 그림에서 □ABCD 가 정사각형이고 △PBC 가 정삼각형이다. ∠APD 의 크기로 알맞은 것은?



①
$$110^{\circ}$$
 ② 120° ③ 130° ④ 140° ⑤ 150°

 $\overline{AB}=\overline{BP}=\overline{PC}=\overline{DC}$ 이므로 $\triangle ABP$ 와 $\triangle DPC$ 는 이등변삼각 형이다. $\angle ABP=90\,^{\circ}$ – $\angle PBC=90\,^{\circ}$ – $60\,^{\circ}=30\,^{\circ}$

∠BPA = ∠CPD = (180° - 30°) ÷ 2 = 75° 따라서 ∠ABD = 360° - (60° + 75° + 75°) = 150°이다. **10.** 다음 그림의 정사각형 ABCD 에서 $\overline{DE} = \overline{CE}$ 일 때, $\triangle ADE$ 와 합동인 삼각형과 합동 조건을 옳게 구한 것은?



- ① △ADE ≡ △BCE (SSS합동)
- ② △ADE ≡ △ACE (SSS합동)
 ③ △ADE ≡ △BCE (SAS합동)
 - ④ △ADE ≡ △ACE (SAS합동)
- ⑤ $\triangle ADE \equiv \triangle BCE (ASA합동)$

- 해설 △ADE 와 △BCE 에서

¬ AD = BC (정사각형의 한 변)

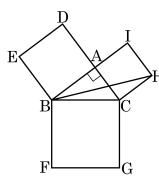
 \bigcirc $\overline{\mathrm{DE}} = \overline{\mathrm{CE}}$ (.: $\triangle \mathrm{ADE}$ 는 이등변 삼각형이다)

© ∠ADE = ∠CDE + 90° = ∠DCE + 90° (∵ △ADE 는 이등변

삼각형)

①, ©, ©에 의해 $\triangle ADE \equiv \triangle BCE$, SAS합동

11. 다음 그림과 같이 세 변의 길이가 모두 다른 직각삼각형 ABC 와 정사각형 ADEB, BFGC, ACHI 가 있다. 이 때, ΔHBC 와 합동인 삼각형과 합동 조건으로 올바르게 짝지어진 것은?



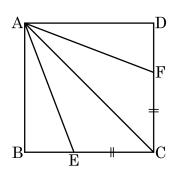
- ① △HBC ≡ △AGC/ASA합동
- ② △HBC ≡ △AGC/SAS합동
- ③ △HBC ≡ △AGC/SSS합동④ △HBC ≡ △EBC/ASA합동
- ③ △HBC ≡ △EBC/SAS합동

$$\ \, \underline{\mathbb{C}} \overline{\mathrm{CB}} = \overline{\mathrm{CG}}$$

©
$$\angle BCH = \angle BCA + 90^{\circ} = \angle GCA$$

 \bigcirc , \bigcirc , \bigcirc 에 의해 $\triangle HBC \equiv \triangle AGC/SAS합동$

12. 다음 그림의 정사각형ABCD 에서 $\overline{EC} = \overline{FC}$ 일 때, 다음 중 옳지 않은 것을 모두 고르면? (정답 2개)



- ① 합동인 삼각형은 모두 3 쌍이다.
- ② △ABC 와 △ADC 는 ASA 합동이다.
- \bigcirc $\triangle ABE \equiv \triangle ADF$
- \bigcirc \triangle ACE \equiv \triangle ACF

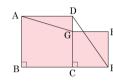
해설

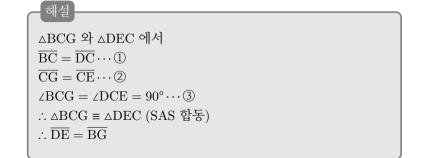
- ① 합동인 삼각형은 \triangle ABE 와 \triangle ADF , \triangle ABC 와 \triangle ADC , \triangle AEC 와 \triangle AFC , 모두 세 쌍이다.
- ② △ABC ≡ △ADC (SSS 합동, SAS 합동)

 $:\overline{AB} = \overline{AD}, \ \overline{BC} = \overline{DC}, \ \overline{AC} \$ 는 공통 : SSS합동

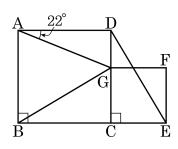
- $\overline{AB} = \overline{AD}, \ \overline{BC} = \overline{DC}, \ \angle B = \angle D :: SAS합동$ ③ $\triangle ABE = \triangle ADF(SAS합동)$
- $\angle B = \angle D = 90^{\circ}, \overline{AB} = \overline{AD}, \overline{BE} = \overline{DF} : SAS합동$
- ⑤ $\triangle ACE = \triangle ACF(SAS합동)$
- : EC = FC, ∠ACE = ∠ACF = 45°, AC 는 공통 : SAS합동

13. 다음 그림에서 □ABCD 와 □CEFG 는 정사각형이다. DE 의 길이와 같은 것은?





14. 다음 그림에서 □ABCD 와 □CEFG 는 정사각형이다. ∠DAG = 22° 이고, ∠CDE = 60° 일 때, ∠AGB 의 값으로 알맞은 것은?

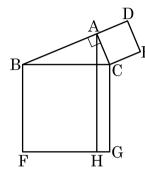


① 80° ② 81° ③ 82° ④ 83° ⑤ 84°

$$\Delta BCG$$
 와 ΔDCE 에서 $\overline{BC} = \overline{DC}$, $\overline{CG} = \overline{CE}$ $\angle BCG = \angle DCE = 90^{\circ}$

따라서 \triangle BCG \equiv \triangle DEC (SAS 합동)이다. \angle CDE = 60° 이므로 \angle GBC = 60°

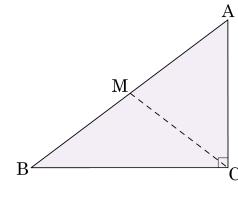
∠GAB = 68°, ∠GBA = 30° 이므로 ∠AGB = 180° - 68° - 30° = 82° 이다. 15. 다음 그림에서 $\triangle ABC$ 는 직각삼각형이고 \overline{AC} 를 한 변으로 하는 정사각형 ACED, \overline{BC} 를 한 변으로 하는 정사각형 BFGC 를 만들 때, $\triangle BCE$ 와 합동인 삼각형을 구하면?($\angle A=90^\circ$)



①
$$\triangle$$
ACH ② \triangle ACG ③ \triangle BAE ④ \triangle BCD ⑤ \triangle BGC

 $\overline{CB} = \overline{CG} \cdots \boxed{1}$ $\overline{EC} = \overline{AC} \cdots \boxed{2}$

 $\angle BCE = \angle BCA + 90^{\circ} = \angle GCA \cdots$ ③ ①, ②, ③에서 $\triangle ECB = \triangle ACG(SAS합동)$ 구하여라. M



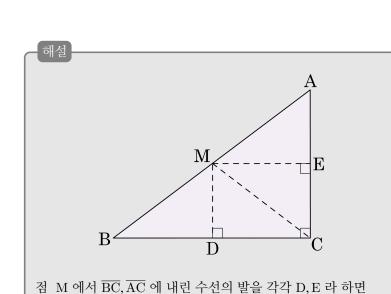
다음 그림의 삼각형 ABC 는 $\overline{AB} = 5$, $\overline{BC} = 4$, $\overline{AC} = 3$ 인 직각

삼각형이다. 점 M 은 변 AB 의 중점일 때, 삼각형 MBC 의 넓이를

답:

16.

▷ 정답: 3



∠AME = ∠MBD (동위각)이므로 △AME ≡ △MDB (ASA 합동)

 \triangle AME 와 \triangle MDB 에서 $\overline{AM} = \overline{MB}$, \angle MAE = \angle BMD (동위각),

∠MDC = ∠AEM = 90°, MD = AE (△AME = △MDB)이므로 ∴ △AME = △MDC (SAS 합동)

따라서 △AME ≡ △MDB ≡ △MDC 이므로

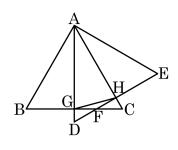
 \triangle AME 와 \triangle MDC 에서 $\overline{\text{ME}} = \overline{\text{CD}}$,

 $\overline{\text{ME}} = \overline{\text{BD}} = \overline{\text{CD}} = 2$, $\overline{\text{AE}} = \overline{\text{EC}} = \overline{\text{MD}} = \frac{3}{2}$

 $\therefore \triangle MBC = \frac{1}{2} \times 4 \times \frac{3}{2} = 3$

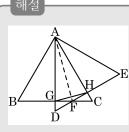
17. 다음 그림에서 삼각형 ABC 와 삼각형 ADE 는 같은 정삼각형이다.

∠BFE - ∠CAD 의 크기를 구하여라.



답:

> 정답: 120°



ΔABG 와 ΔAEH 에서 ΔABC 와 ΔADE 는 합동인 정삼각형이

므로

 $\overline{AB} = \overline{AE}$, $\angle ABF = \angle AEH = 60^{\circ}$, $\angle BAG = 60^{\circ} - \angle GAH = \angle EAH$

∴ △ABG ≡ △AEH (ASA 합동)

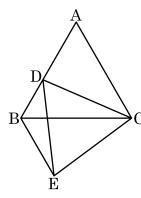
따라서 $\overline{FD} = \overline{FC}$ 이고, $\overline{GF} = \overline{FH}$ 이다.

 \angle GFD = \angle HFC (맞꼭지각) 이므로 \triangle GFD = \triangle HFC (SAS 합동) $\angle BFE = \angle b$, $\angle CAD = \angle a$, $\angle GFD = \angle x$ 라 하면

 $\angle AGB = \angle a + 60^{\circ} = 180 - (\angle x + 60^{\circ})$ $\therefore \angle x = 60^{\circ} - \angle a$ $\angle BFE = 180^{\circ} - \angle x = 180^{\circ} - (60^{\circ} - \angle a) = \angle a + 120^{\circ} = \angle b$

 $\therefore \angle b - \angle a = 120^{\circ}$

18. 다음 그림에서 삼각형 ABC 는 한 변의 길이가 10cm 인 정삼각형이고, 삼각형 CDE 는 한 변의 길이가 7cm 인 정삼각형이다. 선분 BD 의 길이는 4cm 일 때, 삼각형 BDE 의 둘레의 길이를 구하여라.



cm

답:> 정답: 17 cm

해설

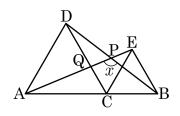
삼각형 ADC 와 삼각형 BEC 에서 삼각형 ABC , 삼각형 CDE 는 정삼각형이므로 $\overline{AC} = \overline{BC}, \overline{CD} = \overline{CE} \cdots$

∠ACD = 60° - ∠BCD = ∠BCE · · · · · · © ③, ⓒ에 의하여

 \triangle ADC \equiv \triangle BEC(SAS 합동) 따라서 \triangle BDE 의 둘레의 길이는

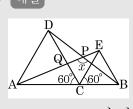
4 + 6 + 7 = 17(cm)

19. 다음 그림에서 \triangle ACD, \triangle CBE 는 정삼각형이고, \overline{BD} 와 \overline{AE} 의 교점이 P 일 때. $\angle x$ 의 크기를 구하여라.



답:

▷ 정답: 120°



 \triangle ACD, \triangle CBE 가 정삼각형이므로 $\overline{AC}=\overline{DC}$, $\overline{CE}=\overline{CB}$, \angle ACE = \angle DCB

따라서 $\triangle ACE \equiv \triangle DCB$ (SAS 합동) \overline{DC} 와 \overline{AE} 의 교점을 Q 라 하면

ΔDQP 와 ΔAQC 에서

∠DQP = ∠AQC (맞꼭지각)

 $\angle QAC = \angle QDP$ ($\because \triangle ACE \equiv \triangle DCB$) 따라서 $\angle DPQ = \angle ACQ = 60^{\circ}$

 $\therefore \angle x = 180^{\circ} - 60^{\circ} = 120^{\circ}$

20. 다음 그림은 정사각형 EBCD 와 정삼각형ABE 를 합쳐 오각형 ABCDE 를 만든 것이다. $\angle x + \angle y + \angle z$ 의 크기를 구하여라.

