
1. 평행사변형 ABCD에서 $\overline{\rm EF}//\overline{\rm BD}$ 이다. $\triangle {\rm ABE}=20\,{\rm cm}^2$ 일 때, $\triangle {\rm AFD}$ 의 넓이를 구하여라.

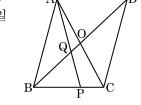
① $16 \,\mathrm{cm}^2$ ④ $22 \,\mathrm{cm}^2$ ② $18 \,\mathrm{cm}^2$ ③ $24 \,\mathrm{cm}^2$ $320\,\mathrm{cm}^2$

 $\overline{\mathrm{DE}}$ 와 $\overline{\mathrm{BF}}$ 를 그으면 $\Delta \mathrm{ABE} = \Delta \mathrm{DBE} = \Delta \mathrm{DBF} = \Delta \mathrm{DAF}$

 ${f 2.}$ 다음 그림과 같은 사각형 ${
m ABCD}$ 에서 ${
m \overline{AB}}//{
m \overline{FE}}$ 일 때, 넓이가 같은 삼각형은 모두 몇 쌍 있는가?

① 1쌍 ② 2쌍

③3쌍


④ 4쌍 ⑤ 5쌍

 $\triangle ABE = \triangle ABF, \ \triangle AEF = \triangle BEF$

해설

 $\triangle APF = \triangle PBE$

- 다음 평행사변형 ABCD 의 넓이는 $160\,\mathrm{cm}^2$ **3.** 이고 \overline{BC} 의 중점을 P, \overline{AQ} : $\overline{QP}=3:2$ 일 때, □QPCO 의 넓이는?
 - ① $22 \, \text{cm}^2$ ② $24 \, \text{cm}^2$ $3 26 \,\mathrm{cm}^2$
 - $428 \, \text{cm}^2$ $30 \, \text{cm}^2$

 $\triangle APC = \frac{1}{2}\triangle ABC$

 $= \frac{1}{2} \times \frac{1}{2} \times \Box ABCD$ $= \frac{1}{2} \times \frac{1}{2} \times 160$ $= 40 (cm^2)$

 $\triangle PCO = \triangle APO = \frac{1}{2} \triangle APC$ $=\frac{1}{2} \times 40 = 20 \text{ (cm}^2\text{)}$ AQ : QP = 3:2 이므로

 $\triangle QPO = \frac{2}{5}\triangle APO = \frac{2}{5}\times 20 = 8(\,cm^2)$ $\therefore \Box QPCO = \triangle PCO + \triangle QPO$

 $=20+8=28(\mathrm{\,cm^2})$