- ${f 1.}$ 다음 중 $[\]$ 안의 수가 주어진 방정식의 해인 것을 모두 고르면?
 - ① $x^2 + 2x 3 = 0[-1]$ ② $x^2 9x + 20 = 0[4]$ ③ $2x^2 + x 15 = 0\left[\frac{5}{2}\right]$ ④ $x^2 + 4x 12 = 0[6]$

2. 이차방정식 (3x-1)(x+2) = 0을 풀면?

3. 이차방정식 $2x^2 + 3x - 2 = 0$ 을 풀면?

- $x = 1 \, \text{\pm L} \, x = -2$ ④ $x = \frac{1}{2} \, \text{\pm L} \, x = 1$
- $x = 1 \, \Xi \stackrel{\vdash}{\vdash} x = 2$ ② $x = -1 \, \Xi \stackrel{\vdash}{\vdash} x = 2$
- $x = -2 \, \cancel{\Xi} \, = \frac{1}{2}$

4. 두 이차방정식 $x^2 - 2x - 15 = 0$ 과 $x^2 - 9 = 0$ 의 공통인 근을 고르면?

① -6 ② -5 ③ -4 ④ -3 ⑤ -2

5. 이차방정식 $(x-3)^2-2=0$ 의 두 근을 α , β 라고 할 때, $\alpha+\beta$ 의 값은?

 $4 -2\sqrt{2}$ 5 -6

① 6 ② $2\sqrt{2}$ ③ $6+2\sqrt{2}$

다음 보기는 완전제곱식을 이용하여 이차방정식 $x^2 + 6x + 3 = 0$ 을 6. 푸는 과정이다. (가)~(마)에 들어갈 것으로 옳지 <u>않은</u> 것은?

보기 $x^2 + 6x = (7)$ $x^{2} + 6x + (\frak{\frak{\dagger}}) = (\frak{?}) + (\frak{\dagger})$ $(x + (다))^2 = (라)$ $x + (다) = \pm \sqrt{(라)}$ $\therefore x = (마)$

④ (라): 6

① (7¹): -3

- ② (나): 9 ③ (다): 3 ⑤ (미): $\pm \sqrt{6}$

7. 방정식 $3x(Ax - 5) = 6x^2 + 2$ 이 이차방정식이 되기 위한 A 값이 될 수 <u>없는</u> 것은?

① -2 ② -1 ③ 0 ④ 2 ⑤ 4

8. 이차방정식 $-x^2 + 2x + 8 = 0$ 의 두 근의 합이 $x^2 - 2x + a = 0$ 의 근일 때, a 의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

- 9. 다음 이차방정식 중에서 근의 개수가 1개인 것은?
 - ① $x^2 + 10x = -24$ ② $x^2 5x 14 = 0$ ③ $2x^2 - 8x + 8 = 0$ ④ $x^2 + 15 = -8x$
 - $3x^2 + 18x 48 = 0$

10. 이차방정식 $3x^2-6x-2=0$ 을 $(x-a)^2=b$ 의 꼴로 나타낼 때, 2a+3b 의 값은?

① 3 ② 4 ③ 5 ④ 6 ⑤ 7

11. 부등식 $2 \le 2x - 2 < 5$ 를 만족시키는 두 자연수가 이차방정식 $x^2 + ax + b = 0$ 의 근일 때, $a^2 - b^2$ 의 값은?

① 61 ② 51 ③ 11 ④ -11 ⑤ -61

12. 이차방정식 $x^2 - 3x + 1 = 0$ 의 한 근을 a 라 할 때, $a^2 + \frac{1}{a^2}$ 의 값은?

① 2 ② 4 ③ 7 ④ 8 ⑤ 9

- **13.** x 에 대한 이차방정식 $(m-1)x^2 (m^2 + 2m 2)x + 21 = 0$ 의 한 근이 3 일 때, 두 근을 모두 양수가 되게 하는 m 의 값과 나머지 한 근의 합을 구하면? ① $\frac{13}{2}$ ② $\frac{15}{2}$ ③ $\frac{17}{2}$ ④ $\frac{19}{2}$ ⑤ $\frac{21}{2}$

- **14.** 이차방정식 $(x-1)^2 = 3 k$ 의 근에 대한 설명 중 옳지 <u>않은</u> 것은?
 - k = -6 이면 근이 2개이다.
 k = -1 이면 정수인 근을 갖는다.
 - ③ k = 0이면 무리수인 근을 갖는다.
 - ④ k = 1이면 근이 1개이다.
 - ⑤ *k* = 3이면 중근을 갖는다.

15. $x^2 + ax + b = 0$ 에서 계수 a , b 를 정하기 위하여 주사위를 던져서 나오는 첫 번째의 수를 a , 두 번째의 수를 b 라 한다. 이 때, 이 이차 방정식이 중근을 가지는 확률은? ① $\frac{1}{2}$ ② $\frac{1}{3}$ ③ $\frac{1}{6}$ ④ $\frac{1}{9}$ ⑤ $\frac{1}{18}$