1. 삼차방정식 $x^3 + 27 = 0$ 의 모든 근의 합은?

①0 2 1 3 2 4 3 5 4

 $x^3 + 3^3 = 0$, $(x+3)(x^2 - 3x + 9) = 0$

 $x^3 + 27 = 0$ 에서 x^2 의 계수가 0이므로 근과 계수와의 관계에 의해 세 근의 합은 0

- 연립방정식 ax + by = 8, 2ax by = -2의 근이 x = 1, y = 2일 때, **2**. a, b의 값은?
 - ① a = -2, b = -3
- ② a = 3, b = 2
- ③ a = 2, b = -3⑤ a = -3, b = -2
- $\bigcirc a = 2, \ b = 3$

ax + by = 8, 2ax - by = -2근이 x = 1, y = 2이므로

 $\begin{cases} a + 2b = 8 \\ 2a - 2b = -2 \end{cases}$ $\therefore a = 2, b = 3$

- **3.** 사차방정식 $x^4 + 3x^2 10 = 0$ 의 모든 실근의 곱은?
 - ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

 $x^4 + 3x^2 - 10 = 0$ 에서 $x^2 = t$ 로 치환하면

해설

t + 5t - 10 = 0, (t + 5)(t - 2) = 0∴ t = -5 또는 t = 2

 $\therefore x = \pm \sqrt{5}i$ 또는 $x = \pm \sqrt{2}$ 따라서 모든 실근의 곱은

 $\sqrt{2} \times (-\sqrt{2}) = -2$

4. 삼차방정식 $x^3 + x^2 + ax + b = 0$ 의 두 근이 -3, $1 - \sqrt{2}$ 일 때, 유리수 a, b의 합 a + b의 값은?

① -10 ② -5 ③ 0 ④ 5 ⑤ 10

계수가 실수인 삼차방정식의 한 근이 $1-\sqrt{2}$ 이므로 다른 한 근은 $1+\sqrt{2}$ 이다. 따라서, 근과 계수의 관계에 의하여 $a=(1-\sqrt{2})\left(1+\sqrt{2}\right)+(-3)\left(1-\sqrt{2}\right)+(-3)\left(1+\sqrt{2}\right)=-7$

 $a = (1 - \sqrt{2}) \left(1 + \sqrt{2} \right) + (-3) \left(1 - \sqrt{2} \right) + (-3) \left(1 + \sqrt{2} \right) = -3$ $b = -\left(1 - \sqrt{2} \right) \left(1 + \sqrt{2} \right) (-3) = -3$ $\therefore a + b = -10$

.. u + v = 10

- **5.** 다음 중 1+i가 하나의 근이며 중근을 갖는 사차방정식은?
 - ② $(x^2 - 2x + 2)(x - 1)(x + 1)$
 - $(x^2 1)(x^2 2x 1)$
 - $(x^2+1)(x-1)(x+1)$

 - $(x^2+1)(x^2-2x+1)$

한 근이 1+i이면

해설

다른 한 근은 1 - i이다.

 $(x^2 - 2x + 2)(x - \alpha)^2 = 0$.. ① 이 조건에 맞다

- 삼차방정식 x^3 $5x^2+ax+b=0$ 의 한 근이 $1+\sqrt{2}$ 일 때, 다른 두 6. 근을 구하면? (단, a,b는 유리수)

 - $\textcircled{4} \ 1 \sqrt{2} \ , \ -3 \qquad \qquad \textcircled{5} \ -1 + \sqrt{2} \ , \ 3$
 - ① $1 \sqrt{2}$, 2 ② $-1 + \sqrt{2}$, -3 ③ $1 \sqrt{2}$, 3

해설

한 근이 $1+\sqrt{2}$ 이면 다른 한 근은 $1-\sqrt{2}$ 이다.

- 삼차방정식의 근과 계수와의 관계에 의해 세근의 합은 5이므로 $\therefore 1 + \sqrt{2} + (1 - \sqrt{2}) + \alpha = 5, \ \alpha = 3$
- ∴ 다른 두 근은 3,1 √2

7. $x^3-1=0$ 의 한 허근을 ω 라 할 때, $\omega^3+\overline{\omega}^3$ 의 값을 구하면? (단, $\overline{\omega}$ 는 ω 의 켤레복소수이다.)

① -1 ② 0 ③ 1 ④ 2 ⑤ 3

$$x^{3} - 1 = (x - 1)(x^{2} + x + 1) = 0$$

$$x = 1 또는 x = \frac{-1 \pm \sqrt{3}i}{2}$$

$$\frac{-1 + \sqrt{3}i}{2} \stackrel{=}{=} \omega$$
라 하면

$$x = 1 \pm \frac{1}{2} = \frac{1}{2}$$

$$-1 + \sqrt{3}i = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\overline{\omega} = \frac{-1 - \sqrt{3}i}{2}$$

$$\therefore \ \omega^3 = 1, \ \overline{\omega}^3 = 1, \ \omega^3 + \overline{\omega}^3 = 2$$

$$\therefore \omega^3 = 1, \overline{\omega}$$

8. 연립방정식 $\begin{cases} y = x + 1 \\ x^2 + y^2 = 5 \end{cases}$ 의 해를 $x = \alpha, y = \beta$ 라 할 때, $\alpha^2 + \beta^2 - \alpha\beta$ 의 값은?

① 1 ②3 ③ 5 ④ 7 ⑤ 9

 9. 연립방정식 $\begin{cases} x^2 - 3xy + 2y^2 = 0 \\ x^2 + 2y^2 = 12 \end{cases}$ 을 만족하는 x, y에 대하여 x + y 값이 될 수 <u>없는</u> 것은?

2. , _ . . <u>2. .</u> . . _

④ -4

① $3\sqrt{2}$

② 4

③ $-3\sqrt{2}$

(4)

 \bigcirc $4\sqrt{2}$

해설 $x^2 - 3xy + 2y^2 = 0 에서$

(x-y)(x-2y) = 0 : x = y 또는 x = 2yi) x = y 일 때 $x^2 + 2y^2 = 3x^2 = 12$

 $x = \pm 2, \ y = \pm 2$

ii) x = 2y일 때 $x^2 + 2y^2 = 6y^2 = 12$

 $y = \pm \sqrt{2}, \quad x = \pm 2\sqrt{2}$

 $\therefore x + y = 4, -4, 3\sqrt{2}, -3\sqrt{2}$

10. 연립방정식 $\begin{cases} x^2 + y^2 = 5 \\ x^2 - xy + y^2 = 3 \end{cases}$ 의 해를 x = a, y = b라 할 때, ab의 값은?

- ① -2 ② -1 ③ 0 ④ 1

해설

$$x^2 - xy + y^2 = 3 \quad \cdots$$

 $x^2 + y^2 = 5$ ··· ① $x^2 - xy + y^2 = 3$ ··· ② ①을 ②에 대입하면 5 - xy = 3, xy = 2

 $\therefore ab = 2$

11. 방정식 $(x^2 + x)^2 + 2(x^2 + x + 1) - 10 = 0$ 의 모든 실근의 합은?

① -10 ② -2 ③ -1 ④ 2 ⑤ 10

 $A^2 + 2A - 8 = 0,$

(A+4)(A-2) = 0

∴ A = -4 또는 A = 2(i) $x^2 + x = -4$ 일 때,

 $x^2 + x + 4 = 0$

 $\therefore x = \frac{-1 \pm \sqrt{15}i}{2}$ (ii) $x^2 + x = 2$ 일 때,

$$x^2 + x - 2 = 0,$$

(x+2)(x-1) = 0 $\therefore x = -2 \stackrel{\mathsf{L}}{=} x = 1$

(i), (ii)에서 실근은 x=-2 또는 x=1 이므로 실근의 합은 -2+1=-1

12. 두 다항식 $f(x) = x^3 - 5, g(x) = x^3 + 3x + 1$ 에 대하여 f(x) = 0의 세 근을 α, β, γ 라고 할 때, $g(\alpha)g(\beta)g(\gamma)$ 의 값은?

해설

2351 ① 350 3 352 **③** 354 4 353

f(x)=0의 세 근이 $lpha,eta,\gamma$ 라고 하면 $lpha^3=5,eta^3=5,\gamma^3=5$ 이다.

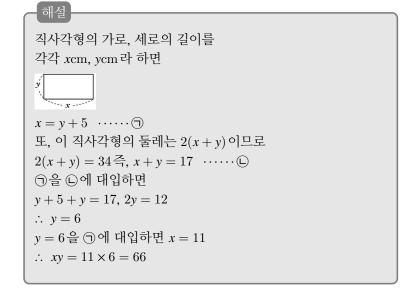
 $g(\alpha) = \alpha^3 + 3\alpha + 1 = 3\alpha + 6, g(\beta) = \beta^3 + 3\beta + 1 = 3\beta + 6,$ $g(\gamma) = \gamma^3 + 3\gamma + 1 = 3\gamma + 6 \ g(\alpha)g(\beta)g(\gamma)$

 $=(3\alpha+6)(3\beta+6)(3\gamma+6)=351\ (\because \alpha+\beta+\gamma=0,\,\alpha\beta+\beta\gamma+\gamma\alpha=$ $0,\,\alpha\beta\gamma=5)$

13. 가로의 길이가 세로의 길이보다 $5\,\mathrm{cm}$ 더 긴 직사각형이 있다. 둘레의 길이가 $34\,\mathrm{cm}$ 일 때, 이 직사각형의 가로의 길이와 세로의 길이의 곱을 구하여라.(단, 단위 생략)

답:

▷ 정답: 66



14. 다음 연립방정식의 모든 해의 합을 구하여라.

$$\begin{cases} x + y = -3 \\ xy = -4 \end{cases}$$

답:

▷ 정답: -6

해설

x, y 는 t 에 대한 이차방정식 $t^2 + 3t - 4 = 0$ 의 두 근이므로 (t-1)(t+4) = 0 에서 t=1 또는 t=-4 따라서, 구하는 해는 $\begin{cases} x=1 & \text{ 또는 } \begin{cases} x=-4 \\ y=-4 \end{cases} \end{cases}$ x=1 x=-4 x=1 x=1

- **15.** 두 이차방정식 $ax^2 + 4x + 2 = 0$, $x^2 + ax + 1 = 0$ 이 오직 하나의 공통근을 갖도록 하는 상수 a 의 값을 구하면?
 - ① $-\frac{5}{3}$ ② $-\frac{7}{2}$ ③ $-\frac{5}{2}$ ④ $-\frac{1}{2}$ ⑤ $-\frac{5}{7}$

공통근을 t 라 하면

 $at^2 + 4t + 2 = 0 \cdots \bigcirc$

 $t^2 + at + 1 = 0 \cdot \cdot \cdot \bigcirc$

 $\bigcirc - \bigcirc \times 2 : (a-2)t^2 + (4-2a)t = 0$

(a-2)t(t-2) = 0

이때, a=2 이면 두 방정식은 서로 같으므로 $a \neq 2$ 그런데 t=0 이면 \bigcirc , \bigcirc 의 해가 존재하지 않으므로 t=2

따라서 ⓒ에서 2a+5=0

 $\therefore \ a = -\frac{5}{2}$

16. 삼차방정식 $x^3 + (2a+3)x^2 - (6a+5)x + (4a+1) = 0$ 이 중근을 가질 때, 상수 a의 값을 구하면?

① $a = 2, -4 \pm \sqrt{11}$ ② $a = -2, -2 \pm \sqrt{10}$ ③ $a = 3, -3 \pm \sqrt{5}$ ④ $a = 1, 4 \pm \sqrt{10}$

 $3 \ a = -1, -2 \pm 2\sqrt{2}$

 $f(x) = x^3 + (2a+3)x^2 - (6a+5)x + 4a + 1$ 이라 하면 f(1) = 0이므로 f(x)는 (x-1)을 인수로 갖는다. 1 | 1 2a+3 -6a-5 4a+1 2a+4 -4a-1 1 1 2a+4 -4a-1 0 조립제법을 이용하여 좌변을 인수분해하면 $(x-1) \left\{ x^2 + 2(a+2)x - 4a - 1 \right\} = 0$ (i) $x^2 + 2(a+2)x - 4a - 1 = 0$ 이 $x \neq 1$ 인 경우 D = 0이므로, $a^2 + 8a + 5 = 0$ $\therefore \ a = -4 \pm \sqrt{11}$ (ii) $x^2 + 2(a+2)x - 4a - 1 = 0$ 이 x = 1을 근으로 갖는 경우 x = 1을 대입하면 1 + 2(a + 2) - 4a - 1 = 0 $\therefore a=2$ (i), (ii)에서 a=2, $-4\pm\sqrt{11}$

- **17.** 각 수가 다른 두 수의 곱이 되는 0이 아닌 실수의 순서쌍 (a, b, c)의 개수는?
 - ① 1개 ② 2개 ③ 3개 ④4개 ⑤ 5개

a = bc, b = ca, c = ab,

해설

 $abc = (bc)(ca)(ab) = (abc)^2,$ $abc \neq 0, \quad abc = 1,$

 $abc = a^2 = b^2 = c^2 = 1$

 $a = \pm 1, b = \pm 1, c = \pm 1$

그러나 abc = 1 이므로, a, b, c 중에서 -1 인 것은 없거나 2

케이다. (a, b, c) = (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1)

18. 두 이차방정식 $3x^2 - (k+1)x + 4k = 0$, $3x^2 + (2k-1)x + k = 0$ 이 단 하나의 공통인 근 α 를 가질 때, $3k+\alpha$ 의 값은? (단, k는 실수인 상수)

<u>1</u>-1

② 0 ③ 1 ④ 2 ⑤ 3

해설

공통근이 α 이므로 $3\alpha^2 - (k+1)\alpha + 4k = 0$

 $3\alpha^2 + (2k-1)\alpha + k = 0$ 두 식을 변변끼리 빼면 $3k(\alpha-1)=0$

k=0 또는 $\alpha=1$ k = 0이면 두 식이 같아지므로

조건에 맞지 않는다. ∴ α = 1을 대입하면

 $3 - (k+1) + 4k = 0, \quad k = -\frac{2}{3}$

 $\therefore 3k + \alpha = -1$

19. 2년 전의 A와 B의 임금은 서로 같았으나 그 해 A의 임금은 8% 인상 되었고, 작년에는 다시 47% 인상되었다. 반면 B의 임금은 2년 전과 작년의 임금 인상률이 모두 a% 로 일정했다. 두 사람의 올해 임금이 서로 같을 때, a의 값을 구하여라.

➢ 정답: 26

▶ 답:

해설 2년 전 두 사람의 임금을 k원이라면

올해 A와 B의 임금은 각각 A: k(1+0.08)(1+0.47)

 $B : k \left(1 + \frac{a}{100} \right)^2$

 $(100 + a)^2 = 108 \times 147 = 3 \times 3 \times 6 \times 6 \times 7 \times 7$ $\therefore 100 + a = 126$

따라서

 $\therefore a = 26$