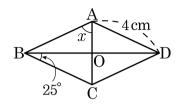

1. 다음 그림의 마름모 ABCD 에 대하여 다음 중 옳지 $\underline{\text{않은}}$ 것은?

①
$$\angle ADC = 60^{\circ}$$

②
$$\angle AOD = 90^{\circ}$$


$$\overline{AO} = \frac{5}{2}$$
cm

$$\overline{\text{BO}} = 5\text{cm}$$

 \bigcirc $\triangle AOD \equiv \triangle COD$

- ① 대각선이 한 내각을 이등분하므로 ∠ABO = 30°, ∠ABC =
- $\angle ADC = 60^{\circ}$
- ② 대각선이 서로 다른 것을 수직이등분
- ③ △ABC 는 정삼각형
- ⑤ 대각선에 의해 나눠지는 네 개의 삼각형은 모두 합동

2. 다음 그림과 같은 마름모 ABCD 에서 $\angle x$ 의 크기를 구하면?

① 25°

② 45°

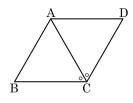
③ 50°

대각선이 한 내각을 이등분하므로 ∠ABO = 25° 이고, ∠AOB =

4

⑤ 75°

해설


90° 따라서 $\angle x = 90^{\circ} - 25^{\circ} = 65^{\circ}$ 이다. 3. 평행사변형 ABCD 에서 두 대각선이 직교할 때, □ABCD 는 어떤 사각형인가?

 ① 정사각형
 ② 직사각형
 ③ 마름모

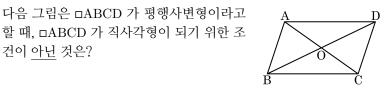
 ④ 등변사다리꼴
 ⑤ 사다리꼴

| ____ | 평행사변형에서 두 대각선이 직교하면 마름모가 된다.

다음 그림과 같은 평행사변형 ABCD 에서 ∠BCA = ∠DCA 이면 □ABCD 는 어떤 사각 형인가?

③ 직사각형

- ① 평행사변형
 - ② 사다리꼴
- ④ 정사각형 ⑤마름모

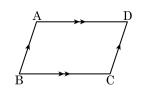

해설

 \overline{AD} // \overline{BC} 이므로 $\angle BCA = \angle DAC$ (엇각), $\angle DCA = \angle CAB$ (엇각)이고, $\overline{AB} = \overline{DC}$, $\overline{AD} = \overline{BC}$ 이므로 $\triangle ABC$, $\triangle CDA$ 는 이등 변삼각형이다. $\therefore \overline{AB} = \overline{BC}$, $\overline{AD} = \overline{CD} \rightarrow \overline{AB} = \overline{BC} = \overline{CD} = \overline{DC}$

DA : □ABCD는 마름모가 된다.

할 때, □ABCD 가 직사각형이 되기 위한 조 건이 아닌 것은?

5.


$$\overline{2}$$
 $\overline{AC}\bot\overline{BD}$

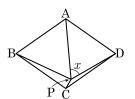
$$\overline{OC} = \overline{OD}$$

- ①, ③한 내각이 직각이고 두 대각선의 길이가 같은 평행사변형은 직사각형이다.
- ② 하지만 $\overline{AC}_{\perp}\overline{BD}$ 는 조건에 만족하지 않는다. (:: 마름모)

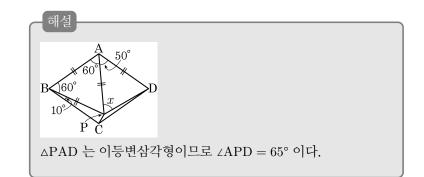
 $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BC}}$, $\overline{\mathrm{AB}}\,/\!/\,\overline{\mathrm{CD}}$ 를 만족할 때, 직사각 형이 되는 조건을 모두 고르면?

다음 그림과 같은 사각형 ABCD 가

- ① /A = /C 이다.
- ② ∠A = ∠D 이다.

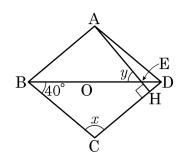

6.

- ③ \overline{AC} 와 \overline{BD} 가 만나는 점을 O 라고 할 때, $\overline{AO} \bot \overline{DO}$ 이다.
- $\widehat{\text{40}}$ $\overline{\text{AD}}$ 의 중점을 M 이라고 할 때, $\overline{\text{BM}} = \overline{\text{CM}}$ 이다.
- ⑤ $\overline{AB} = \overline{CD}$ 이고, $\overline{AB} / / \overline{CD}$ 이다.

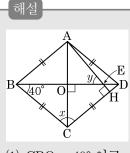

한 내각이 직각인 평행사변형은 직사각형이다.

- \bigcirc $\angle A = \angle D = 90^{\circ}$
- ④ △ABM ≡ △DCM (SSS 합동) 이므로 ∠A = ∠D = 90°

7. □ABCD 는 마름모이고 △ABP 는 정삼각형 이다. ∠ABC = 70°일 때, ∠APD = ()° 이다. () 안에 알맞은 수는?

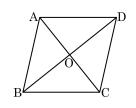


- ① 65 ② 60
- **4** 50 **5** 45


3 55

다음 그림에서 \square ABCD 가 마름모일 때, $\angle x$ 와 $\angle y$ 의 크기는? 8.

(4) $x = 100^{\circ}, y = 50^{\circ}$


- ① $x = 90^{\circ}, y = 45^{\circ}$
- ② $x = 95^{\circ}, y = 45^{\circ}$
- ③ $x = 90^{\circ}, y = 40^{\circ}$
- ⑤ $x = 100^{\circ}, y = 40^{\circ}$

$$\angle BCO = 50^{\circ}$$
, $\angle x = 2\angle BCO$ 이므로

- $\therefore \angle x = 100^{\circ}$
- (2) \triangle DEH 에서 \angle EDH = 40° , \angle DHE = 90°
- 이므로, ∠DEH = 50°
- ∠y = ∠DEH (맞꼭지각)이므로
- $\therefore \angle y = 50^{\circ}$
- $\therefore \angle x = 100^{\circ}, \ \angle y = 50^{\circ}$ 이다.

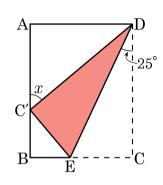
9. 평행사변형 ABCD가 마름모가 되게 하는 조 건을 모두 고른 것은?

 \bigcirc $\overline{AC} = \overline{BD}$

 \bigcirc $\overline{AB} = \overline{BC}$

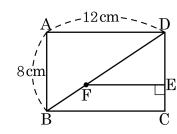
 \bigcirc $\angle DAB = 90^{\circ}$

- \bigcirc $\angle AOB = \angle COB$
- ① ⑦, ②

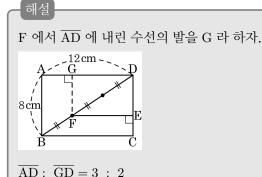

② ①, ⑤

3) (L), (E), (D

- 4 7, 2, 0
- \bigcirc \bigcirc , \bigcirc , \bigcirc , \bigcirc

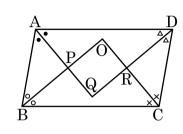

해설

두 대각선의 길이가 같다고 해서 마름모는 아니다. ∠DAB = 90° 이면 마름모가 아니라 직사각형이 된다. **10.** 다음 그림과 같이 직사각형 ABCD 를 ∠EDC = 25° 가 되고 꼭짓점 C 가 변 AB 위에 있도록 접었다. 이 때,∠x 의 크기는?



직사각형의 네 내각의 크기는 모두 90° 이고, ∠EDC = ∠C'DE = 25° 이므로 ∠ADC' = 90° - (25° × 2) = 40° 이다. ∠x = ΔAC'D 에서 ∠AC'D = 90° - 40° = 50° 이다.

11. 오른쪽 그림의 직사각형 ABCD 에서 $\overline{AD}=12\mathrm{cm},\ \overline{AB}=8\mathrm{cm}$ 이고 점 F 는 대각선 \overline{BD} 를 삼등분하는 한 점이다. \overline{FD} 에 그은 수선의 발을 \overline{E} 라 할 때, \overline{FE} 의 길이는?


① 8cm ② 7cm ③ 6cm ④ 5cm ⑤ 4cm

 $\therefore \overline{GD} = \frac{2}{3} \times \overline{AD} = 8(cm)$

따라서 $\overline{\text{FE}} = \overline{\text{GD}} = 8(\text{cm})$

12. 평행사변형 ABCD 의 네 각의 이등분선의 교점으로 만들어지는 사각 형 OPQR는 어떤 사각형인가?

- ① 평행사변형
- ② 마름모

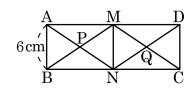
③ 등변사다리꼴

④ 직사각형

⑤ 정사각형

$$\angle BAD + \angle ADC = 180$$
°이므로
 $\angle QAD + \angle ADQ = 90$ °

:. 직사각형


 13. 직사각형 ABCD 에서 어두운 도형의 넓이는
 A E D

 ?
 6cm

① 22 ② 24 ③ 26 ④ 28 ⑤ 30

 $\overline{AE} = \overline{FC}$, $\overline{AE} / / \overline{FC}$ 하므로 $\Box AFCE$ 는 평행사변형이다. $\overline{CF} = 4$ 이므로 $\Box AFCE = 4 \times 6 = 24$

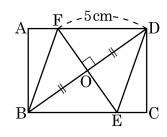
14. 다음 직사각형 ABCD에서 $\overline{AD} = 18 \text{ cm}$ 이다. 점 M, N이 \overline{AD} , \overline{BC} 의 중점일 때, □MPNQ의 넓이를 바르게 구한것은?

- ① $18 \, \text{cm}^2$
- $21 \,\mathrm{cm}^2$

 $3 24 \, \text{cm}^2$

 $27\,\mathrm{cm}^2$

 $30 \, \text{cm}^2$


 $\overline{AB} = \overline{AM}$ 이므로

 $\triangle MPN = \frac{1}{4} \Box ABNM$

 $\square MPNQ = \frac{1}{4} \square ABCD$

$$= \frac{1}{4} \times 18 \times 6$$
$$= 27 \text{ (cm}^2\text{)}$$

15. 다음 직사각형 ABCD에서 $\overline{BD}\bot\overline{FE}$ 일 때, 사각형 FBED의 둘레의 길이를 구하여라.

① 18 cm ② 20 cm ③ 22 cm ④ 24 cm ⑤ 26 cm

 $\triangle FBO = \triangle FDO(SAS합동) 이므로$

 $\Delta FBO \equiv \Delta FDO(SAS GS) \cap \Box S$ $\overline{FB} = \overline{FD}$

△FOD ≡ △EOB(ASA합동) 이므로

 $\overline{FD} = \overline{EB}$

△BEO ≡ △DEO(SAS합동) 이므로

 $\overline{\mathrm{EB}} = \overline{\mathrm{ED}}$

해설

따라서 $\overline{FB} = \overline{EB} = \overline{ED} = \overline{FD}$ 이므로 $\Box FBED$ 는 마름모이다.

따라서 OFBED의 둘레의 길이는

 $\overline{FB} + \overline{BE} + \overline{ED} + \overline{DF} = 4 \times 5 = 20 \text{ (cm)}$