1.
$$x^2 + y^2 + 2xy - x - y$$
을 인수분해 하면?

$$(x-y)(x-y-1)$$

②
$$(x+y)(x-y-1)$$

④ $(x+y)(x+y-1)$

$$(x+y)(x+y+1)$$

 $= (x + y)^2 - (x + y) = (x + y)(x + y - 1)$

$$x^2 + y^2 + 2xy - x - y$$

2. 이차함수 $y = -2x^2$ 의 그래프를 x 축의 방향으로 -3 만큼 y 축의 방향으로 4 만큼 평행이동시켰을 때, 최댓값을 구하면?

$$y = -2(x+3)^2 + 4$$

따라서 $x = -3$ 일 때, 최댓값은 4 이다.

- 3. 유한집합 X 에서 유한집합 Y 로의 함수 f 의 역함수 f^{-1} 가 존재한다고 한다. 다음 설명 중 옳지 <u>않은</u> 것을 고르면?
 - n(X) = n(Y)이다.
 - $x_1 \neq x_2$ 이면 $f(x_1) \neq f(x_2)$ 이다.
 - y = f(x)와 $y = f^{-1}(x)$ 의 그래프는 직선 y = x 에 대하여 대칭이다.
 - f(a) = b 이면 $f^{-1}(b) = a$ 이다.

 ⑤ y = f(x) 의 정의역은 $y = f^{-1}(x)$ 의 정의역과 일치한다.

해설
⑤
$$(f 의 정의역) = (f^{-1} 의 치역)$$

 $(f^{-1} 의 정의역) = (f 의 치역)$

4. f(x) = 2x - 3 이고 g(x) 가 $(g \circ f)^{-1}(x) = 2x$ 를 만족시킬 때, g(1) 의 값은 얼마인가?

$$\Leftrightarrow g(f(2x)) = x$$
 $f(2x) = 2 \bullet 2x - 3 = 4x - 3$
 $\therefore g(f(2x)) = g(4x - 3) = x$
 $4x - 3 = 1$ 에서 $x = 1$ 이므로
 $g(4x - 3) = x$ 의 양변에 $x = 1$ 을 대입하면 $g(1) = 1$

 $(g \circ f)^{-1}(x) = 2x \Leftrightarrow (g \circ f)(2x) = x$

- 5. 분수함수 $y = \frac{ax+b}{x-1}$ 의 그래프와 그 역함수의 그래프가 모두 점 (2, 3) 을 지날 때, 상수 a, b 의 곱 ab 의 값을 구하여라.
 - ▶ 답:
 - ▷ 정답: 1

$$f(x) = \frac{ax+b}{x-1}$$
 라 하면 $f(2) = 3$, $f^{-1}(2) = 3$
 $f(2) = 2a+b=3\cdots$ $f^{-1}(2) = 3$ 에서 $f(3) = 2$ 이므로

⊙, ⓒ 을 연립하여 풀면

a = 1, b = 1 :: ab = 1

 $f(3) = \frac{3a+b}{2} = 2$: $3a+b = 4 \cdots \bigcirc$

6. 연립부등식
$$\begin{cases} -x+3 > x-5 \\ 2x-1 \ge a \end{cases}$$
 의 해가 $-3 \le x < 4$ 일 때, a 의 값을 구하여라.

①
$$-8$$
 ② -7 ③ -5 ④ 3 ⑤ 4

$$-x+3>x-5$$
, $x<4$
$$2x-1\geq a$$
, $x\geq \frac{a+1}{2}$ 연립부등식의 해가 $-3\leq x<4$ 이므로
$$\frac{a+1}{2}=-3$$
, $a+1=-6$

7. 모든 실수 x에 대하여 $x^2 - 2mx - m \ge 0$ 을 만족하는 실수 m의 범위는 $a \le m \le b$ 이다. a + b의 값을 구하여라.

$$ightharpoonup$$
 정답: $a+b=-1$

$$x^2 - 2mx - m \ge 0$$
이
항상 성립하려면 판별시 $D \le 0$

$$\frac{D}{4} = m^2 + m \le 0$$

$$m(m+1) \le 0, -1 \le m \le 0$$
∴ $a+b = (-1) + 0 = -1$

8. 부등식 $x^2 - 2ax + a + 2 < 0$ 의 해가 존재하지 않기 위한 실수 a의 값의 범위는?

①
$$-2 \le a \le 1$$

$$\boxed{3} -1 \le a \le 2$$

$$4 -1 < a < 2$$

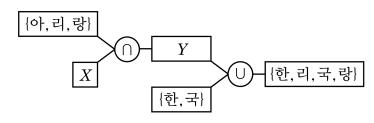
모든 실수
$$x$$
 에 대하여 $x^2 - 2ax + a + 2 > 0$ 이어야 한다.

 $x^2 - 2ax + a + 2 < 0$ 의 해가 존재하지 않으려면

이차방정식
$$x^2 - 2ax + a + 2 = 0$$
 의 판별식을 D 라 하면 $\frac{D}{A} = a^2 - a - 2 \le 0$ 에서

$$(a+1)(a-2) \le 0$$
$$\therefore -1 < a < 2$$

9. 두 집합 X, Y의 교집합과 합집합을 다음 그림과 같이 나타내기로 한다. 이때, 만족하는 집합 Y를 구하여라.



 $Y \cup \{ \hat{v}, \} = \{ \hat{v}, \}, \} \cap \mathbb{P}^2$ 이므로 $\{ \hat{u}, \} \subset Y \subset \{ \hat{v}, \}, \} \cap \mathbb{P}^2$

또, $\{ \circ, \exists, \exists \} \cap X = Y \circ \Box \exists Y \subset \{ \circ, \exists, \exists \} \circ \Box$ 따라서 $Y = \{ \exists, \exists \} \circ \Box$. 10. 전체집합 $U = \{x \mid x \in 9 \text{ 이하의 자연수}\}$ 의 두 부분집합 A, B 가 다음 조건을 모두 만족할 때, 다음 중 집합 A 의 부분집합인 것을 모두 고르면?(정답 2개)

(3) {1, 3, 5, 7}

해설 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \text{ 이다.}$ 주어진 조건을 벤 다이어그램으로 나타내면 다음 그림과 같으므로 $A = \{1, 3, 5, 9\} \text{ 이다.}$ 따라서 A 의 부분집인 것은 ①, ②이다.

11. 540의 양의 약수의 총합을 구하여라.

▶ 답:

➢ 정답: 1680

이 일
$$(1+2+2^2)(1+3+3^2+3^3)(1+5)$$
$$= 7 \times 40 \times 6 = 1680$$

12. 다음 등식을 만족시키는 n의 값을 구하여라.

$$_{10}C_{n+2} =_{10} C_{2n+2}$$

- ▶ 답:
- ➢ 정답: 0

 $_{10}C_{n+2} =_{10} C_{2n+2}$ 에서 n+2=2n+2 일 때 : n=0n+2=10-(2n+2) 일 때 : 3n=6, n=2

 $\therefore n = 0 \text{ or } 2$

- 13. 팔각형의 대각선의 개수를 구하여라.
 - ① 16 ② 20 ③ 22 ④ 28 ⑤ 32

해설 점 8개 중 2개를 골라 직선을 만들고 그 중에서 팔각형의 변이 되는 경우를 제한다. ${}_8C_2 - 8 = 20$

14. 원에 내접하는 칠각형에 대하여 대각선은 모두 몇 개를 그을 수 있는 가?

① 7 ② 12 ③ 14 ④ 35 ⑤ 38

7 개의 점에서 2 개를 택하는 조합
$$\therefore_{7}C_{2}=rac{7!}{5!2!}=21$$
이 때, 7 각형의 변의 개수는 빼줘야 하므로

∴ 21 – 7 = 14 개

15. 이차함수 $y = x^2 - 1$ 의 그래프와 직선 y = ax + b 가 다음 그림과 같이 두 점 P, Q에서 만난다. 점 P의 x의 좌표가 $1 + \sqrt{2}$ 일 때, 2a + b의 값을 구하여라. (단, a, b는 유리수이다.)

$$\begin{array}{c|c}
y=x^{-1} \\
\hline
P \\
y=ax+b \\
-1
\end{array}$$

해설

이차함수
$$y = x^2 - 1$$
 의 그래프와 직선 $y = ax + b$ 의 한 교점 P 의 x 좌표가 $1 + \sqrt{2}$ 이므로 $1 + \sqrt{2}$ 는 이차방정식 $x^2 - 1 = ax + b$ 의 근이다.
$$\left(1 + \sqrt{2}\right)^2 - 1 = a\left(1 + \sqrt{2}\right) + b$$

$$2 + 2\sqrt{2} = a + b + a\sqrt{2}$$

 a, b 가 유리수이므로 무리수가 서로 같을 조건에 의하여 $2 = a + b, 2 = a$

$$\therefore a = 2, \ b = 0$$

16. 원 밖의 한 점 (3,-1) 에서 원 $x^2 + y^2 = 4$ 에 그은 두 접선의 기울기를 p, q라 할 때, p-q의 값은? (단, p>q)

①
$$\frac{\sqrt{6}}{5}$$
 ② $\frac{2\sqrt{6}}{5}$ ③ $\frac{3\sqrt{6}}{5}$ ④ $\frac{4\sqrt{6}}{5}$ ⑤ $\sqrt{6}$

해설
$$A(3,-1) \stackrel{\triangle}{=} \text{ 지나고 기울기가 } m \text{ 인 접선을}$$

$$y+1=m(x-3) \stackrel{\triangle}{=}, mx-y-3m-1=0 \text{ 이라고 하면}$$
 원의 중심 $(0,0)$ 에서 접선까지의 거리는 원의 반지름 2와 같아야한다. 따라서
$$2=\frac{|-3m-1|}{\sqrt{m^2+1}}, |-3m-1|=2\sqrt{m^2+1}$$
 양변을 제곱을 하여 정리를 하면,
$$5m^2+6m-3=0 \text{ 이다.}$$
 이때, 두 기울기 p,q 은 이차방정식의 두근이므로 근과 계수와의 관계에 의하여 두근의 합 $p+q=-\frac{6}{5}$, 두근의 곱 $pq=-\frac{3}{5}$ 따라서 $(p-q)^2=(p+q)^2-4pq=\frac{36}{25}+\frac{12}{5}=\frac{96}{25}$ 따라서 $p-q=\frac{4\sqrt{6}}{5}$

17. 다음 중 명제와 그 역이 <u>모두</u> 참인 것은?

- ① $xy \ge 0$ 이면 $x \ge 0$ 또는 $y \ge 0$
- ② $x + y \ge 0$ 이면 $x \ge 0$ 이고 $y \ge 0$
- ③ $x \ge y$ 이면 $\frac{1}{x} \le \frac{1}{y}$
- 4 $x \le 2$ 이면 $|x-1| \le |x-3|$
- ⑤ a > 0 이고 b > 0 이면 $a^2 + b^2 > 0$

- ① 거짓: (반례) x = -2, y = -1 일 때, $xy = 2 \ge 0$ 이지만 -2 < 0 이고 -1 < 0 이다
 - ② 거짓 : (반례) x = -2, y = 3 일 때,
- $x + y = -2 + 3 \ge 0$ 이지만 -2 < 0 이고 3 > 0 이다. ③ 거짓: (반례) x = 2, y = -2 일 때.
- $2 \ge -2$ 이지만 $\frac{1}{2} > -\frac{1}{2}$ 이다.

역이 모두 참이다.

- ④ $|x-1| \le |x-3|$ 의 양변을 제곱하면 $x^2 2x + 1 \le x^2 6x + 9$ 에서 $x \le 2$ 이므로 원래의 명제와 그
- ⑤ 명제 a > 0 이고 b > 0 이면 $a^2 + b^2 > 0$ 은 참이지만, 그의 역 $a^2 + b^2 > 0$ 이면 a > 0 이고 a > 0 이고

18. 다음은 'x, y 가 자연수일 때, xy 가 짝수이면 x 또는 y 가 짝수이다.' 를 증명하는 과정이다.(가), (나), (다)에 들어갈 말로 알맞게 짝지어진 것은?

- ① 짝수, 홀수, 참
- ③ 짝수, 짝수, 거짓 ④ 홀수, 홀수, 참

② 짝수, 짝수, 참

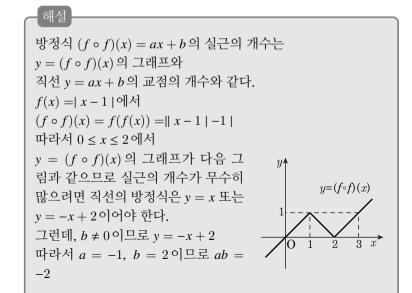
⑤ 홀수, 홀수, 거짓

해설 주어진 명제의 대우는 '자연수 x, y 에 대하여 x 와 y 가 홀수이면

xy 도 홀수이다.' 이다.x = 2a - 1, y = 2b - 1 (a, b 는 자연수) 라 하면xy = (2a - 1)(2b - 1) = 2(2ab - a - b) + 1 이므로 xy 는 홀수가된다.따라서, 대우가 참이므로 주어진 명제도 참이다.

19. $0 \le x \le 2$ 에서 함수 f(x) = |x-1|에 대하여 방정식 $(f \circ f)(x) = ax + b$ 의 실근의 개수가 무수히 많도록 하는 상수 a,b의 곱 ab의 값은? (단, $b \ne 0$)

▷ 정답: -2



- 20. 서로 다른 7 개의 과일이 있다. 이 중 빨간 색이 3 개, 노란 색이 2 개, 검은 색이 2 개다. 이 중에서 4 개의 과일을 택할 때, 빨간 색과 노란 색의 과일이 적어도 각각 한 개씩 포함되는 경우의 수는?
 - ① 25 ② 27 ③ 29 ④ 31 ⑤ 33

해설
7 개의 과일 중에서 4 개의 과일을 선택하는 경우의 수는
$$_7C_4 = _7C_3 = 35$$
 (가지)
이 중에서 빨간 색 과일이 한 개도 없는 경우의 수는 $_4C_4 = 1$ (가지)
노란 색 과일이 한 개도 없는 경우의 수는 $_5C_4 = 5$ (가지)
빨간 색과 노란 색 과일이 한 개도 없는 경우의 수는 0 (가지)
따라서 구하는 경우의 수는 $_35 - (1+5) = 29$ (가지)

21. 임의의 실수 x, y에 대해서

$$y^{12} + 1 = x_0 + x_1(y - 1) + x_2(y - 1)^2 + x_3(y - 1)^3 + \cdots + x_{12}(y - 1)^{12}$$

이 성립할 때, $x_1 + x_3 + x_5 + x_7 + x_9 + x_{11}$ 의 값은?

①
$$2^{11}$$
 ② 2^{11}

②
$$2^{12}$$

$$3 2^{13}$$

$$4 3^{11}$$

$$\Im 3^{12}$$

$$y = 2$$
 대입: $2^{12} + 1 = x_0 + x_1 + x_2 + \dots + x_{12}$
 $y = 0$ 대입: $1 = x_0 - x_1 + x_2 - \dots + x_{12}$
각변끼리 빼주면
 $2^{12} = 2(x_1 + x_3 + x_5 + \dots + x_{11})$ 이므로
 $x_1 + x_3 + x_5 + \dots + x_{11} = 2^{12-1} = 2^{11}$

22. 사차방정식 $x^4 - ax^2 + (a+1) = 0$ 이 서로 다른 두 개의 실근과 두 개의 허근을 갖기 위한 실수 a의 범위는?

- (1) a < -1
 - ② a > 1
 - $3 -1 < a < 2(1 \sqrt{2})$
 - $4 1 < a < 2(1 + \sqrt{2})$
 - \bigcirc 2(1 $\sqrt{2}$) < a < 2(1 + $\sqrt{2}$)

 $X = x^2$ 으로 놓으면. $X^2 - aX + (a+1) = 0 \cdot \cdot \cdot \cdot \cdot \bigcirc$

주어진 사차방정식이 두 개의 실근과 두 개의 허근을 가지려면 방정식 ○이 양근 하나 음근 하나를 가져야 한다. \therefore (두 근의 곱) = a+1<0

 $\therefore a < -1$

대하여 서로 대칭이다. 직선 1의 방정식은?

①
$$y = -2x + 3$$
 ② $y = -x + 2$ ③ $y = x + 3$

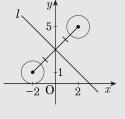
$$y = -x + 2$$

(3)
$$y = x + 3$$

$$= 2x - 1$$

두 원의 중심 (-2, 1), (2, 5) 는 직선 l 에 대하여 대칭이므로 직선 1은 두 원의 중심을 연결한 선분의 수직이등분선이다.

따라서 직선l 의 방정식을 v = ax + b 라 하면 i) 두 원의 중심을 지나는 직선의 기울 기가



$$\frac{5-1}{2-(-2)} = 1$$
이므로
$$a = -1$$

ii) 두 원의 중심을 연결한 선분의 중점의 좌표는 $\left(\frac{-2+2}{2}, \frac{5+1}{2}\right)$ 에서 (0,3) 이므로 b=3 이다.

따라서 구하는 직선의 방정식은 y = -x + 3 이다.

24. 집합 $P = \{p_1, p_2, p_3, \dots, p_N\}$ 에 대하여 $f(P) = p_1 + p_2 + p_3 + \dots + p_N$ 이라 정의한다.

집합 $A = \{3,6,9,12\}$ 의 부분집합을 $A_1,A_2,A_3,\cdots,A_{16}$ 이라 할 때, $f(A_1)+f(A_2)+(A_3)+\cdots+f(A_{16})$ 의 값을 구하여라.

해설

240

$$A = \{3,6,9,12\}$$
 의 부분집합을 $A_1,A_2,A_3,\cdots,A_{16}$ 이라 두면,
집합 A 의 모든 부분집합에서 하나의 원소는 모두 $2^{4-1}=8$ (번)
씩 나온다.
따라서 $f(A_1)+f(A_2)+(A_3)+\cdots+f(A_{16})=8\times(3+6+9+12)=$

- **25.** 집합 $X = \{1, 2, 3\}$ 에 대하여 $A \subset B \subset X$ 를 만족하는 두 집합 A, B의 순서쌍 (A, B)의 개수는?
 - ① 8 개 ② 16 개 ③ 24 개 ④ 27 개 ⑤ 32 개

_ 해설

 $A \subset B \subset X$ 를 만족하는 두 집합 A, B를 집합 B의 원소의 개수에 따라 분류해 보면

- i) n(B)=0 일 때, $B=\varnothing$ 이면 $A=\varnothing$ 이므로 1가지이다.
- ii) n(B) = 1 일 때, $B = \{1\}$, $\{2\}$, $\{3\}$ 각각의 경우에 따라 A 는 2가지씩이므로 6가지이다.
- iii) n(B) = 2 일 때, $B = \{1, 2\}, \{2, 3\}, \{3, 1\}$ 각각의 경우에 따라 $A \vdash 4$ 가지씩이므로 12가지이다.
- iv) n(B) = 3 일 때, $B = \{1, 2, 3\}$ 이면 $A \leftarrow 8$ 가지이다. 따라서 두 집합 A, B 의 순서쌍 (A, B) 의 개수는 1 + 6 + 12 + 8 = 27 (개)이다.