1. 다음 중 유리수인 것을 모두 고르면? (정답 2개)

 $\sqrt[3]{\sqrt{0.1}}$ $\sqrt[4]{0.01001000100001...}$

 $\sqrt{1.21}$

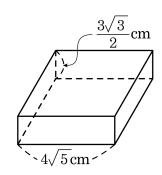
© 0.121

해설

π

- ① π 는 순환하지 않는 무한소수이다.(무리수이다.)
- ② $\sqrt{1.21} = \frac{11}{10}$ 의 분수꼴로 나타낼 수 있기 때문에 유리수이다.
- ③ $\sqrt{0.1}$ 는 순환하지 않는 무한소수이다.(무리수이다.) ④ 0.01001000100001... 비순환소수다.(무리수이다.)
- ⑤ $0.\dot{1}2\dot{1} = \frac{121}{900}$ 의 분수꼴로 나타낼 수 있기 때문에 유리수이다.

- 2. 다음 중 수직선 위에서 -1 과 √3 사이에 있는 수에 대한 설명으로 옳은 것은?
 - ① 자연수가 2 개 있다. ② 정수가 3 개 있다.
 - ③ 유리수가 유한개 있다. ④ 무리수는 없다.
 - ⑤ 실수는 무수히 많다.


해설

- 1 < √3 < 2 이므로 범위는 -1 ~ 1. × ×× ① 자연수가 2 개 있다. → 자연수는 1, 한 개 있다.
- ② 정수가 3 개 있다. → 정수는 0, 1 . 두 개 있다.
- ③ 유리수가 유한개 있다. → 무수히 많다.
 - ④ 무리수는 없다. → 무수히 많다.

3. $\sqrt{3000}$ 은 $\sqrt{30}$ 의 A 배이고, $\sqrt{5000}$ 은 $\sqrt{0.5}$ 의 B 배일 때, A+B 의 값은?

$$\sqrt{3000} = \sqrt{30 \times 10^2} = 10 \sqrt{30}$$

∴ $A = 10$
 $\sqrt{5000} = \sqrt{0.5 \times 100^2} = 100 \sqrt{0.5}$
∴ $B = 100$
∴ $A + B = 10 + 100 = 110$

4. 한 변의 길이가 $4\sqrt{5}$ cm 인 정사각형을 밑면으로 갖는 직육면체의 높이가 $\frac{3\sqrt{3}}{2}$ cm 일 때, 직육면체의 부피를 구하여라.

 cm^3

답:

$$ightharpoonup$$
 정답: $120\sqrt{3}$ cm^3

$$V = (4\sqrt{5})^2 \times \frac{3\sqrt{3}}{2} = 80 \times \frac{3\sqrt{3}}{2} = 120\sqrt{3} \text{ cm}^3$$

5.
$$\sqrt{18} + 4\sqrt{2} - 3\sqrt{8} + \sqrt{2^5}$$
 을 간단히 하여라.

$$3\sqrt{2} + 4\sqrt{2} - 6\sqrt{2} + 4\sqrt{2} = 5\sqrt{2}$$

3. $\sqrt{48} - 2\sqrt{3} - \frac{3}{\sqrt{27}}$ 을 간단히 하면?

①
$$-\frac{2}{3}\sqrt{3}$$
 ② $-\frac{3}{4}\sqrt{3}$ ④ $\frac{2}{3}\sqrt{3}$ ⑤ $\frac{5}{3}\sqrt{3}$

 $4\sqrt{3} - 2\sqrt{3} - \frac{3}{3\sqrt{3}} = 2\sqrt{3} - \frac{\sqrt{3}}{3} = \frac{5}{3}\sqrt{3}$

$$\sqrt{2}(\sqrt{8} - \frac{3}{\sqrt{3}}) + (6 + 2\sqrt{3}) \div \sqrt{2}$$

①
$$-\sqrt{6}$$

②
$$4 - 2\sqrt{2}$$

(3) 4

$$4 - 3\sqrt{6}$$

$$\bigcirc 3 + 3\sqrt{2}$$

$$\sqrt{2}\left(\sqrt{8} - \frac{3}{\sqrt{3}}\right) + (6 + 2\sqrt{3}) \div \sqrt{2}$$

$$= 4 - \frac{3\sqrt{6}}{3} + \frac{6\sqrt{2} + 2\sqrt{6}}{2}$$
$$= 4 - \sqrt{6} + 3\sqrt{2} + \sqrt{6}$$
$$= 4 + 3\sqrt{2}$$

3. $\sqrt{5}$ 의 소수 부분을 a , $\sqrt{7}$ 의 정수 부분을 b 라고 할 때, a+b 의 값을 구하면?

①
$$\sqrt{5}$$
 ② $\sqrt{5} + 1$ ③ $\sqrt{5} - 1$ ④ $\sqrt{5} + 2$

해설
$$2 < \sqrt{5} < 3$$
 이므로 $\sqrt{5}$ 의 정수 부분은 2 , 소수 부분 $a = \sqrt{5} - 2$ $2 < \sqrt{7} < 3$ 이므로 $\sqrt{7}$ 의 정수 부분 $b = 2$ $\therefore a + b = \sqrt{5} - 2 + 2 = \sqrt{5}$

9. 다음 중 옳은 것은? (정답 2 개)

② $(\sqrt{0.4})^2 = 0.2$

(4) $\sqrt{(-1.5)^2} = -1.5$

$$\left(-\sqrt{\frac{2}{3}}\right)^2 = \frac{2}{3}$$

$$(\sqrt{0.7})^2 = 0.7$$

$$\sqrt{\left(\frac{1}{2}\right)^2} = \frac{1}{2}$$

②
$$\sqrt{0.4^2} = 0.4$$

10. A, B 가 다음과 같을 때, A + B 의 값은?

$$A = \sqrt{196} \div \sqrt{(-2)^2} - \sqrt{(-3)^4} \times \left(-\sqrt{2}\right)^2$$
$$B = \sqrt{144} \times \sqrt{\frac{25}{81}} \div \left(-\sqrt{\frac{4}{9}}\right)$$

해설
$$A = 14 \div 2 - 3^2 \times 2 = 7 - 18 = -11$$

$$B = 12 \times \frac{5}{9} \div \left(-\frac{2}{3}\right) = 12 \times \frac{5}{9} \times \left(-\frac{3}{2}\right) = -10$$

$$\therefore A + B = -11 + (-10) = -21$$

11.
$$x < 0$$
 일 때, $\sqrt{(-3x)^2} - \sqrt{(5x)^2} - \sqrt{(9x^2)}$ 을 간단히 하면?

①
$$-5x$$
 ② x ③ $5x$ ④ $11x$ ⑤ $13x$

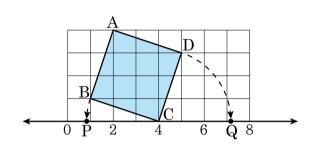
해설

$$x < 0$$
 일 때, $-3x > 0$, $5x < 0$, $3x < 0$ 이므로
 $\sqrt{(-3x)^2} - \sqrt{(5x)^2} - \sqrt{(9x^2)}$
 $= -3x - (-5x) - (-3x)$
 $= -3x + 5x + 3x = 5x$

12. -1 < a < 2 일 때, 다음 식을 간단히 하면?

$$\sqrt{(a-2)^2} - \sqrt{(a+1)^2}$$

①
$$a-3$$
 ② $-2a-3$ ③ $-2a+1$ ④ 3


$$\sqrt{(a-2)^2} - \sqrt{(a+1)^2}$$

$$= -(a-2) - (a+1) \ (\because \ a-2 < 0, \ a+1 > 0)$$

$$= -a+2-a-1$$

$$= -2a+1$$

13. □ABCD 는 정사각형이다. 점 P, Q 를 수직선 위에 놓을 때, 좌표 P(a), Q(b) 에 대하여 a+b 의 값을 구하여라.

해설

$$ightharpoonup$$
 정답: $a+b=8$

$$P(a) = 4 - \sqrt{10}, \ Q(b) = 4 + \sqrt{10}$$
$$a + b = 4 - \sqrt{10} + 4 + \sqrt{10} = 8$$

14. $\sqrt{2}=a, \ \sqrt{3}=b, \ \sqrt{5}=c, \ \sqrt{7}=d$ 일 때, $\sqrt{420}$ 을 a, b, c, d 를 사용하여 나타내면?

 \bigcirc abc²d

$$\textcircled{4}a^2bcd$$
 $\textcircled{5}a^2bc^2d$

② a^2bc

$$\sqrt{420} = \sqrt{2^2 \times 3 \times 5 \times 7} = a^2 bcd$$

(1) *abcd*

15.
$$2\sqrt{133} \div \frac{1}{\sqrt{7}} \div \frac{1}{\sqrt{19}}$$
 를 간단히 하여라.

$$2\sqrt{133} \div \frac{1}{\sqrt{7}} \div \frac{1}{\sqrt{19}} = 2\sqrt{133} \times \sqrt{7} \times \sqrt{19}$$
$$= 2\sqrt{133} \times 7 \times 19$$
$$= 2\sqrt{133^2}$$

= 266

16. $x = \frac{3}{\sqrt{5} + \sqrt{2}}$, $y = \frac{3}{\sqrt{5} - \sqrt{2}}$ 일 때 x + y의 값을 구하면?

①
$$\frac{3\sqrt{5}}{10}$$
 ② $\frac{3\sqrt{5}}{5}$ ③ $2\sqrt{2}$ ④ $5\sqrt{2}$ ⑤ $2\sqrt{5}$

해설
$$x = \frac{3}{\sqrt{5} + \sqrt{2}} = \sqrt{5} - \sqrt{2}, y = \frac{3}{\sqrt{5} - \sqrt{2}} = \sqrt{5} + \sqrt{2}$$
이므로
$$x + y = 2\sqrt{5}$$

17.
$$(2a-3b+1)^2-(2a+3b-1)^2=8a\,(Aa+Bb+C)$$
 일 때, A+B-C을 구하여라.

= 4a (-6b + 2)= 8a (-3b + 1)

$$2a - 3b + 1 = X$$
, $2a + 3b - 1 = Y$ 로 치환하면 $(2a - 3b + 1)^2 - (2a + 3b - 1)^2$ $= X^2 - Y^2 = (X + Y)(X - Y)$

A + B - C = 0 + (-3) - 1 = -4

18. 자연수 x 에 대하여 \sqrt{x} 이하의 자연수의 개수를 f(x) 라고 할 때, f(150) - f(99) 의 값은?

① 2개 ③ 4개 ④ 5개 ⑤ 6개 f(150) - f(99) 는 $\sqrt{99}$ 초과 $\sqrt{150}$ 이하의 자연수의 개수이다. $\sqrt{99} < 10, 11, 12 \le \sqrt{150}$

: 3개

19. $\sqrt{32} - 2$ 와 $\sqrt{8} + 3$ 중 더 작은 수와 $\sqrt{2} + 2$ 와 $\sqrt{3} - 1$ 중 더 큰 수의 합을 구했더니 $a\sqrt{b}$ 였다. a + b 의 값을 구하여라.

ightharpoonup 정답: a+b=7

$$\sqrt{32} - 2 - \left(\sqrt{8} + 3\right) < 0 \text{ 이므로}$$

$$\sqrt{32} - 2 < \sqrt{8} + 3$$

$$\sqrt{2} + 2 - \left(\sqrt{3} - 1\right) > 0 \text{ 이므로}$$

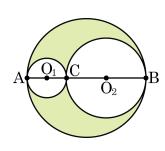
$$\sqrt{2} + 2 > \sqrt{3} - 1$$
두 수의 함은 $\sqrt{32} - 2 + \sqrt{2} + 2 = 4\sqrt{2} + \sqrt{2} = 5\sqrt{2}$
따라서 $a + b = 7$ 이다.

20. 다음 식이 성립하도록 양수 A, B, C 에 알맞은 수를 순서대로 바르게 나열한 것은?

$$(1) a2 + 8a + A = (a + 4)2$$

$$(2) x2 + Bx + 9 = (x + C)2$$

(4) 8, 3, 6


$$a^{2} + 8a + A = (a + 4)^{2} = a^{2} + 8a + 16, A = 16$$

 $x^{2} + Bx + 9 = (x + C)^{2} = x^{2} + 2Cx + C^{2},$
 $C^{2} = 9, C = +3, B = 2C, B = +6$

$$C^2 = 9, C = \pm 3, B = 2C, B = \pm 6$$

 $A = 16, B = 6, C = 3 (B, C = 6)$

1. x 에 관한 이차식 $12x^2 + kx - 7$ 에 대하여 인수분해 한 결과 정수 k 의 최댓값을 구하여라.

$$(x+7)(12x-1) = 12x^2 + 83x - 7$$

22. 다음 그림에서 \overline{AB} 를 지름으로 하는 큰 원과 두 원 O_1 , O_2 가 세 점 A, B, C 에서 서로 접하고 있다. 원 O_1 의 반지름이 a, 원 O_2 의 반지름이 b 일 때. 색칠한 부분의 넓이를 a 와 b 를 사용하여 나타내면?

① $\pi \left(3a^2 + 3b^2 + 8ab\right)$

2 8πab4 πab

 $\Im \pi (2a^2 + 2b^2 + 8ab)$

해설

 $(3)2\pi ab$

 O_1 의 반지름은 a , O_2 의 반지름은 b 이므로 큰 원의 반지름은 a+b 이다.

따라서 색칠한 부분의 넓이는 $(a+b)^2\pi - a^2\pi - b^2\pi = 2ab\pi$ 이다.

23. 양수 a, b, c 에 대하여 A = a + b + ab, B = b + c + bc, C = c + a + ca 이고, A + B + C = 33, A - B + C = -1, A + B - C = 11 일 때, a + b + c 의 값을 구하여라.

24. $a^2 + a + 1 = 0$ 일 때, $a^{11} + \frac{1}{a^{11}}$ 의 값을 구하여라.

$$a^2 + a + 1 = 0$$
 의 양변을 $a (a \neq 0)$ 로 나누면 $a + 1 + \frac{1}{a} = 0$

$$\therefore a + \frac{1}{a} = -1$$

$$\therefore a + \frac{1}{a} = -1$$

$$(a-1)(a^2 + a + 1) = 0$$

$$a^3 - 1 = 0, a^3 = 1$$

$$\therefore a^{11} + \frac{1}{a^{11}} = (a^3)^3 \cdot a^2 + \frac{1}{(a^3)^3 \cdot a^2} - a^2 + \frac{1}{a^3} - \left(a + \frac{1}{a^3}\right)^2$$

 $a^2 + a + 1 = 0$ 의 양변에 a - 1 을 곱하면

$$= a^{2} + \frac{1}{a^{2}} = \left(a + \frac{1}{a}\right)^{2} - 2$$
$$= (-1)^{2} - 2 = -1$$

25.
$$c = \sqrt{4} - 2a - 3b$$
 일 때, $4a^2 + 9b^2 + c^2 + 12ab + 6bc + 4ca$ 의 값을 구하여라.

$$c = \sqrt{4 - 2a - 3b} \text{ 에서 } 2a + 3b + c = \sqrt{4}$$

$$c = \sqrt{4 - 2a - 3b} \text{ and } 2a + 3b + c = \sqrt{4a^2 + 9b^2 + c^2 + 12ab - 6bc - 4ca}$$
$$= (2a)^2 + (3b)^2 + c^2$$

$$+ 2(2a)(3b) + 2(3b)(-c) + 2(-c)(2a)$$

$$= (2a + 3b - c)^{2}$$

$$= (\sqrt{4})^{2} = 4$$