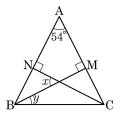

1. 다음 그림에서 $\triangle ABC$ 는 이등변삼각형이다. \overline{BC} 위의 한 점 D 에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 P,Q 라 할 때, $\overline{DP}=7\mathrm{cm}$, $\overline{DQ}=3\mathrm{cm}$ 이다. 점 B 에서 \overline{AC} 에 내린 수선의 길이는?


① 7cm ② 8cm ③ 9cm ④ 10cm ⑤ 11cm

점 D 에서 \overline{BH} 에 내린 수선의 발을 E 라고 하면 $\triangle PBD \equiv \triangle EDB(RHA 합동)$

 $\therefore \overline{BH} = \overline{BE} + \overline{EH} = \overline{DP} + \overline{DQ} = 7 + 3 = 10 (cm)$

2. 다음 그림에서 ΔABC 는 $\overline{AB} = \overline{AC}$, $\angle A = 54^\circ$ 인 이등변삼각형이다. 점 B, C 에서 대변에 내린 수선의 발을 각각 M, N 이라 할 때, $\angle x + \angle y$ 의 크기는 ?

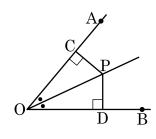
(5) 90°

② 82°

③ 86°

4 88°

$$\triangle$$
BMC 에서 \angle MCB = 63° , $y = 27^{\circ}$ \angle MCN = $63^{\circ} - 27^{\circ} = 36^{\circ}$


∴
$$x = 180^{\circ} - (36^{\circ} + 90^{\circ}) = 54^{\circ}$$

∴ $\angle x + \angle y = 54^{\circ} + 27^{\circ} = 81^{\circ}$

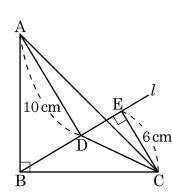
3. 다음 그림과 같이 선분 ĀB 의 양 끝점 A, B l C 40° B 에서 ĀB 의 중점 P 를 지나는 직선 l 에 내 로 4cm, ∠PAC = 40° 일 때, x+y 의 값은?

① 36 ② 44 ③ 46 ④ 54 ⑤ 58

$$\triangle$$
PAC 와 \triangle PBD 에서 \angle PCA = \angle PDB = $90^{\circ}\cdots$ ① $\overline{PA} = \overline{PB}\cdots$ ② \angle CPA = \angle DPB = $y^{\circ}\cdots$ © ①, ②, ©에 의해 \triangle PAC = \triangle PBD(RHA) 삼각형의 내각의 합은 180° 이므로 $\angle y = 180 - 40 - 90 = 50^{\circ}$, $x = 4$ 이므로 이를 합하면 54° 이다.

4. 다음 그림과 같이 ∠AOB의 이등분선 위의 한 점 P에서 두 변 OA, OB에 내린 수선의 발을 각각 C, D라고 할 때, 다음 중 옳지 <u>않은</u> 것은?

①
$$\angle PCO = \angle PDO$$


②
$$\angle COP = \angle DOP$$

$$\overline{\text{PC}} = \overline{\text{PD}}$$

$$\textcircled{4} \triangle COP \equiv \triangle DOP$$

$$\bigcirc \overline{OC} = \overline{OP} = \overline{OD}$$

 \triangle OCP \equiv \triangle ODP(RHA합동) 따라서 $\overline{\text{CO}} = \overline{\text{OD}}, \ \overline{\text{CP}} = \overline{\text{PD}}$ 5. 그림과 같이 $\angle B=90^\circ$ 이고, $\overline{AB}=\overline{BC}$ 인 직각이등변삼각형 ABC 의두 꼭짓점 A, C 에서 꼭짓점 B 를 지나는 직선 l 에 내린 수선의 발을 각각 D, E 라고 하자. $\overline{AD}=10\mathrm{cm}, \ \overline{CE}=6\mathrm{cm}$ 일 때, 삼각형 CDE 의 넓이는?

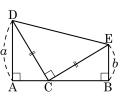
 12cm^2

(4) 60cm^2

- 24cm^2
 - \bigcirc 90cm²

해설

∠ABD + ∠BAD = 90° 이고, ∠ABD + ∠CBE = 90° 이므로 ∠BAD = ∠CBE


 30cm^2

직각삼각형의 빗변의 길이가 같고 한 각의 크기가 같으므로 $\triangle ABD \equiv \triangle BCE$ 이다.

 $\overline{AD} = \overline{BE} = 10 \text{cm}$ 이고, $\overline{BD} = \overline{EC} = 6 \text{cm}$ 이므로 $\overline{DE} = 4 \text{cm}$ 이다.

삼각형 CDE 의 넓이는 $\frac{1}{2} \times 4 \times 6 = 12 \text{(cm}^2)$ 이다.

6. 다음 그림에 대한 설명으로 옳지 <u>않은</u> 것은?

$$\overline{AB} = \overline{DA} + \overline{EB}$$

$$\triangle ACD \equiv \triangle BEC$$

⑤ □ABED = $\frac{1}{2}(a+b)^2$

$$\angle A = \angle B = 90^{\circ} \cdot \cdot \cdot \cdot \cdot \Box$$

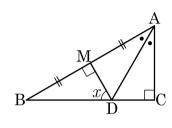
$$\stackrel{\simeq}{\lnot}$$
, $\overline{AC} = \overline{EB}$, $\overline{CB} = \overline{DA}$

$$\therefore \overline{AB} = \overline{AC} + \overline{CB} = \overline{DA} + \overline{EB} = a + b$$

$$\mathbb{E}, \Box ABED = \frac{1}{2}(a+b) \times \overline{AB} = \frac{1}{2}(a+b) \times (a+b) = \frac{1}{2}(a+b)^2$$

7. 다음 그림에서 $\triangle ABC$ 의 넓이는? (단, $\triangle BAC = 90^{\circ}$, \overline{BD} , \overline{CE} 는 각각 점 B, C 에서 \overline{FG} 에 내린 수선, $\overline{AB} = \overline{AC}$, $\overline{BD} = \overline{AC}$, $\overline{CE} = 3$)

 $\triangle BAD = \triangle ACE (RHA 합동) 이므로 <math>\overline{AD} = \overline{CE} = 3, \overline{AE} =$


$$\overline{\mathrm{BD}}=7$$
 이고,
사다리꼴 EDBC 의 넓이는
$$\frac{1}{2}(\overline{\mathrm{DB}}+\overline{\mathrm{EC}})\times\overline{\mathrm{ED}}=\frac{1}{2}(7+3)\times(3+7)=50$$
 이다.

$$\triangle BAD = \triangle ACE = \frac{1}{2} \times 3 \times 7 = \frac{21}{2}$$

$$\therefore \triangle ABC = \square EDBC - \triangle BAD - \triangle ACE$$

$$= 50 - \frac{21}{2} - \frac{21}{2} = 29$$

8. 다음 그림에서 $\triangle ABC$ 는 직각삼각형이고 \overline{AD} 는 $\angle BAC$ 의 이등분선이다. $\overline{AB} \bot \overline{DM}$, $\overline{AM} = \overline{BM}$ 일 때, $\angle x$ 의 크기는?

△ADM ≡ △ADC (RHA 합동)이므로 ∠ADM = ∠ADC··· ①
△MBD ≡ △MAD (SAS 합동)이므로 ∠DAM = ∠DBM··· ⑥
①, ⑥에서
$$3x = 180^{\circ}$$
∴ $\angle x = 60^{\circ}$