⑤
$$\frac{1}{2}$$
의 제곱근 $=\pm\sqrt{\frac{1}{2}}$

④ 0.2의 제곱근 =
$$\pm \sqrt{0.2} = \pm \sqrt{\frac{1}{5}}$$

•
$$5 < a < b$$
 일 때, $\sqrt{(a-b)^2} - \sqrt{(5-a)^2} + \sqrt{(b-5)^2}$ 을 간단히 하면?

①
$$-2a + 12$$
 ② $-2a + 2b$ ③ 0
④ $2a - 12$ ⑤ $2b - 12$

$$a < b$$
 에서 $a - b < 0$
 $5 < a$ 에서 $5 - a < 0$
 $5 < b$ 에서 $b - 5 > 0$
(주어진 식) $= -(a - b) - \{-(5 - a)\} + (b - 5)$
 $= -a + b + 5 - a + b - 5$
 $= -2a + 2b$

3. $\sqrt{99}\sqrt{715} = A\sqrt{65}$, $6\sqrt{5} = \sqrt{B}$ 일 때, B - A 의 값을 구하면?

$$= \sqrt{3^2 \times 5 \times 11^2 \times 13} = 33\sqrt{65}$$
∴ $A = 33$

$$6\sqrt{5} = \sqrt{6^2 \times 5} = \sqrt{180}$$
∴ $B = 180$

 $\sqrt{99}\sqrt{715} = \sqrt{3^2 \times 11}\sqrt{5 \times 11 \times 13}$

$$B - 180$$

$$B - A = 180 - 33 = 147$$

4.
$$-3\sqrt{30} \div \sqrt{5} \div \sqrt{\frac{3}{5}} = n\sqrt{10}$$
 일 때, n 의 값을 구하여라.

$$ightharpoonup$$
 정답: $n = -3$

$$-3\sqrt{30} \div \sqrt{5} \div \sqrt{\frac{3}{5}} = -3\sqrt{30} \times \frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{3}} = -3\sqrt{10}$$

따라서 $n = -3$ 이다.

5. x와 y 사이에는 $y - x = \frac{1}{x}$ 의 식이 성립한다. $x = \sqrt{7}$ 일 때, y = x 로 바르게 표현한 것은?

①
$$\frac{3}{2}x$$
 ② $\frac{7}{8}x$ ③ $\frac{8}{7}x$ ④ $2x$ ⑤ $3x$

해설
$$y = x + \frac{1}{x} = \sqrt{7} + \frac{1}{\sqrt{7}} = \sqrt{7} + \frac{\sqrt{7}}{7} = \frac{8}{7}\sqrt{7} = \frac{8}{7}x$$

6. $a = \sqrt{2}, b = \sqrt{3}$ 일 때, $\sqrt{216} + \frac{\sqrt{24}}{\sqrt{2}}$ 를 a, b 로 나타내면?

①
$$6a + 2b$$
 ② $6a + 2ab$ ③ $6ab + 2b$
④ $2ab + 6b$ ⑤ $2a + 6ab$

$$\sqrt{216} = \sqrt{2^3 \times 3^3} = 2\sqrt{2} \times 3\sqrt{3} = 2a \times 3b = 6ab$$

$$\frac{\sqrt{24}}{\sqrt{2}} = \frac{\sqrt{24} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{48}}{2} = \frac{4\sqrt{3}}{2} = 2\sqrt{3} = 2b$$

$$\therefore \sqrt{216} + \left(\frac{\sqrt{24}}{\sqrt{2}}\right) = 6ab + 2b$$

7. 실수 x, y에 대하여 연산 \star 를 $x \star y = (x + y) \sqrt{3} + xy \sqrt{2}$ 라 할 때, 등식 $(5 \star 2) + (10 \star 1) = a\sqrt{3} + b\sqrt{2}$ 일 때, a + b 의 값은?

$$(5 \star 2) = 7\sqrt{3} + 10\sqrt{2} \text{ 이코,}$$

$$(10 \star 1) = 11\sqrt{3} + 10\sqrt{2} \text{ 이므로}$$

$$(5 \star 2) + (10 \star 1) = 18\sqrt{3} + 20\sqrt{2}$$

$$18\sqrt{3} + 20\sqrt{2} = a\sqrt{3} + b\sqrt{2} \text{ 이므로}$$

$$\therefore a + b = 18 + 20 = 38$$

8. 제곱근표에서 $\sqrt{30} = 5.477$ 일 때, $\sqrt{a} = 0.05477$ 을 만족하는 a 의 값을 구하면?

$$0.05477 = 5.477 \times \frac{1}{100} = \frac{\sqrt{30}}{100}$$
$$= \sqrt{30 \times \frac{1}{10000}}$$
$$= \sqrt{\frac{3}{1000}} = \sqrt{0.003}$$
$$\therefore a = 0.003$$

해설

9.
$$\sqrt{10}$$
 의 소수 부분을 a 라 할 때, $-(a - \sqrt{10})$ 의 값은?

①
$$2\sqrt{10}$$

(5) $\sqrt{10}$

 $(4) -2\sqrt{10}$

해설
$$\sqrt{10} = 3. \times \times \times$$
 이므로 정수 부분이 3 이고, 소수 부분은 $\sqrt{10} - 3$ 이 된다. $\therefore -(a - \sqrt{10}) = -(\sqrt{10} - 3 - \sqrt{10}) = 3$

10.
$$ab - 2a - 2b + 4$$
 를 인수분해한 것으로 옳은 것은?

①
$$(a+2)(b-2)$$
 ② $(a-2)(b+2)$ ③ $(a+2)(b+2)$ ④ $(a-2)(b-2)$

(준시) =
$$a(b-2) - 2(b-2) = (a-2)(b-2)$$

11. 다음 보기에서 옳은 것을 모두 고르시오.

보기

- \bigcirc 양수 A 의 제곱근이 a 이면 $A=a^2$ 이다.
- \bigcirc a 가 제곱근 16 이면 a=4 이다.
- © 제곱근 $\frac{4}{9}$ 의 값은 $\pm \frac{2}{3}$ 이다.
- ② 25 의 제곱근은 ±5 이다.
- 답:
- ▶ 답:
- 답:
- ▷ 정답 : □
- ▷ 정답: □
- ▷ 정답: ②

해설

© 제곱근
$$\frac{4}{9} = \sqrt{\frac{4}{9}} = \frac{2}{3}$$

12. 다음 식을 간단히 하여라.

$$-\sqrt{\left(\frac{1}{2}\right)^2} - \sqrt{\left(-\frac{1}{4}\right)^2} \times \sqrt{0.4^2} - \sqrt{(-1.2)^2}$$

답:

$$-\sqrt{\left(\frac{1}{2}\right)^2} - \sqrt{\left(-\frac{1}{4}\right)^2} \times \sqrt{0.4^2} - \sqrt{(-1.2)^2}$$
$$= -\frac{1}{2} - \frac{1}{4} \times 0.4 - 1.2$$

= -0.5 - 0.1 - 1.2 = -1.8

13. $\{x \mid 300 \le x \le 600, x$ 는 정수 $\}$ 에 대하여 $\sqrt{3} \times \sqrt{x}$ 가 양의 정수가 되도록 하는 정수 x 의 개수를 구하면?

② 52 개 ③ 301 개

-J]]

③ 100개

$$\sqrt{3} \times \sqrt{x} = \sqrt{3x}$$
 가 양의 정수일 때, $3x$ 는 제곱수가 되어야 하고 이 때, $x = 3k^2(k$ 는 자연수)이다. $300 \le 3k^2 \le 600 \Leftrightarrow 100 \le k^2 \le 200$ $k^2 = 10^2$, 11^2 , 12^2 , 13^2 , 14^2

: x 의 개수는 5 개

14. 5x+y=15 일 때, $\sqrt{2x+y}$ 가 자연수가 되게 만드는 가장 작은 자연수 x는?

① 1 ② 2 ③ 4 ④ 7 ⑤ 9

해설
$$5x + y = 15 \Rightarrow y = 15 - 5x$$

$$\sqrt{2x + y} = \sqrt{2x + 15 - 5x} = \sqrt{15 - 3x}$$

$$x 가 가장 작은 자연수가 되려면 근호 안의 수는 15 미만의 가장 큰 제곱수가 되어야 하므로 9가 되어야 한다.$$

$$\sqrt{15 - 3x} = \sqrt{9}$$

$$15 - 3x = 9$$

$$\therefore x = 2$$

0 < a < 1 일 때, 다음 중 가장 큰 값은?

①
$$a^2$$

$$\sqrt{\left(\frac{1}{a}\right)^2}$$

$$\sqrt[3]{\frac{1}{\sqrt{a}}}$$

$$\Im \sqrt{a}$$

$$\frac{1}{\sqrt{a}}$$

$$-$$
 해설 $0 < a < 1$ 일 때 $a = \frac{1}{4}$ 라 하면

②
$$\sqrt{\left(\frac{1}{a}\right)^2} = \sqrt{\frac{1}{\left(\frac{1}{4}\right)^2}} = \sqrt{16} = 4$$

16. $6 < \sqrt{3n} < 8$ 을 만족하는 자연수 n 의 값 중 최댓값을 a, 최솟값을 b 라고 할 때, a - b 의 값을 구하여라.

▷ 정답: a-b = 8

 $\stackrel{\sim}{=} a = 21, \ b = 13 \quad \therefore a - b = 8$

 $6 < \sqrt{3n} < 8 \rightarrow 36 < 3n < 64 \rightarrow 12 < n < \frac{64}{3}$

17. 다음 두 수 6 과 15 사이에 있는 정수 n 에 대하여 \sqrt{n} 이 무리수인 n 의 개수는?

① 11 개 ② 10 개 ③ 9 개 ④ 8 개 ⑤ 7 개

```
7 ~ 14 까지의 정수 중 3<sup>2</sup> = 9 제외.
7,8,10,11,12,13,14 (7개)
```

18. 부등식 $3 \le (\sqrt{2} + 1)x \le 7$ 을 만족하는 자연수 x를 구하여라.

$$\frac{3}{\sqrt{2}+1} \le x \le \frac{7}{\sqrt{2}+1} \therefore 3\sqrt{2}-3 \le x \le 7\sqrt{2}-7$$

$$4 < 3\sqrt{2} = \sqrt{18} < 5$$
 에서 $1 < 3\sqrt{2} - 3 < 2$
 $9 < 7\sqrt{2} = \sqrt{98} < 10$ 에서 $2 < 7\sqrt{2} - 7 < 3$
 $1. \times \times \times \le x \le 2. \times \times \circ$ 이므로

 $3 \le (\sqrt{2} + 1)x \le 7$ 에서 $\sqrt{2} + 1 > 0$ 이므로

따라서 자연수 x=2 이다.

19.
$$(x+y+4)(x-y+4)-16x$$
 를 바르게 인수분해한 것은?

①
$$(x-y+4)$$

$$(x+y-4)^2$$

$$(x-y-2)(x+y+8)$$

$$(x + y - 4)(x - y - 4)$$

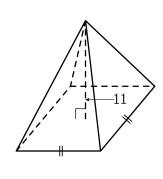
$$(-x - y + 4)(x - y + 4)$$

$$x + 4 = t$$
 라 하면
 $(t + y)(t - y) - 16x$
 $= t^2 - y^2 - 16x$

$$=(x+4)^2-16x-v^2$$

$$= (x^2 + 8x + 16 - 16x) - y^2$$

$$= (x^2 - 8x + 16) - y^2$$
$$= (x - 4)^2 - y^2$$


$$=(x+y-4)(x-y-4)$$

20. $x^3 - y^3 = -2$, xy = -1 일 때, x + y 의 값을 구하여라. (단, x < y)

$$\triangleright$$
 정답: $x+y=0$

$$x^3 - y^3 = (x - y)^3 + 3xy(x - y) = -2$$

 $xy = -1$ 을 대입하면
 $(x - y)^3 - 3(x - y) = -2$,
 $(x - y)^3 - 3(x - y) + 2 = 0$
 $x - y = t$ 로 놓으면
 $t^3 - 3t + 2 = 0$
이를 인수분해하면
 $t^3 - t^2 + t^2 - 3t + 2 = 0$,
 $t^2(t - 1) + (t - 1)(t - 2) = 0$
 $(t - 1)^2(t + 2) = 0$
 $x - y = -2$ (: $x < y$)
 $(x + y)^2 = (x - y)^2 + 4xy$ 이므로
 $(x + y)^2 = (-2)^2 + 4(-1) = 0$
 $x - y = 0$

21. 다음 그림에서 각뿔의 부피가 330 cm³ 일 때, 밑면의 한 변의 길이를 구하여라.

답: <u>cm</u>

ightharpoonup 정답: $3\sqrt{10}$ $\underline{\mathrm{cm}}$

해설

밑면의 한 변의 길이 : x cm $\frac{1}{3} \times x^2 \times 11 = 330, x^2 = 90$

 $\therefore x = \sqrt{90} = 3\sqrt{10} \, (\text{cm})$

22.
$$\frac{1}{49}a^2 - \frac{2}{35}ab + \frac{1}{25}b^2$$
 을 인수분해 하면?

①
$$\left(\frac{1}{7}a + \frac{1}{5}\right)^2$$
 ② $\left(\frac{1}{7}a - \frac{1}{5}\right)^2$ ③ $\left(\frac{1}{7}b - \frac{1}{5}a\right)^2$ ⑤ $\left(\frac{1}{7}a + \frac{1}{5}b\right)^2$

해설
$$\frac{1}{49}a^2 - \frac{2}{35}ab + \frac{1}{25}b^2 = \frac{1}{49}a^2 - \left(2 \times \frac{1}{7}a \times \frac{1}{5}b\right) + \frac{1}{25}b^2 = \left(\frac{1}{7}a - \frac{1}{5}b\right)^2$$

23. $-115^2 - 75^2 + 25^2 + 185^2$ 을 계산하여라.

▶ 답:

▷ 정답: 16000

= 16000

```
-115^{2} - 75 + 25^{2} + 185^{2}
= 185^{2} - 115^{2} + 25^{2} - 75^{2}
= (185 + 115) (185 - 115) + (25 + 75) (25 - 75)
= 300 \times 70 + 100 \times (-50)
= 21000 - 5000
```

24.
$$x^2 + 3x - 1 = 0$$
 일 때, $-x^4 + 7x^2 - 12x + 5$ 의 값은?

① 1

3

4

⑤ 5

 $x^2 + 3x - 1 = 0$ 에서

 $x^2 = 1 - 3x$

$$x^4 = (1 - 3x)^2$$
$$= 1 - 6x + 9x^2$$

$$= 1 - 6x + 9(1 - 3x)$$

$$= 1 - 6x + 9 - 27x$$
$$= 10 - 33x$$

$$\therefore -x^4 + 7x^2 - 12x + 5$$

$$= 33x - 10 + 7(1 - 3x) - 12x + 5$$

= 33x - 10 + 7 - 21x - 12x + 5

$$=2$$

25. 부피가 $x^3 + x^2y - x - y$ 인 직육면체의 밑면의 가로와 세로의 길이가 각각 x - 1, x + 1 일 때, 이 직육면체의 높이를 구하면?

(3) $x^2 + y$

$$\bigcirc$$
 $x-y$

$$x^{3} + x^{2}y - x - y$$

= $x^{2}(x + y) - (x + y)$

$$= (x+y)(x+1)(x-1)$$
이다.

따라서 직육면체의 높이는 x+y 이다.