- 1. 가로, 세로의 길이가 각각 $48 \, \mathrm{m}$, $32 \, \mathrm{m}$ 인 직사각형 모양의 꽃밭의 가장자리에 일정한 간격으로 나무를 심으려고 한다. 네 모퉁이에는 반드시 나무를 심어야 한다. 이때, 나무 그루수를 가능한 적게 하려고 할 때, 나무 사이의 간격은?
 - ① 14 m ② 16 m ③ 18 m ④ 20 m ⑤ 22 m

나무 사이의 간격을 *x* 라 할 때,

48 = x × □, 32 = x × △ x 는 48과 32의 최대공약수이므로 48 = 2⁴ × 3, 32 = 2⁵

 $\therefore x = 2^4 = 16 \text{ (m)}$

- 2. 어떤 수로 70 을 나누면 나누어 떨어지고, 24 를 나누면 4 가 모자라고, 43 을 나누면 1 이 남는다고 한다. 이러한 수 중 가장 큰 수를 구하여라.
 - 답:▷ 정답: 14

V 0H.

어떤 수는 70, 24 + 4 = 28, 43 - 1 = 42 의 공약수이다.

이 중 가장 큰 수는 세 수의 최대공약수이므로 14 이다.

- 3. 토마토 15개, 키위 21개를 최대한 많은 학생들에게 똑같이 나누어 주려고 했더니 모두 3개씩 남았다. 학생은 최대 몇 명인가?
 - ① 4명 ②6명 ③ 8명 ④ 10명 ⑤ 12명

15개, 21개를 똑같이 나누면 3개씩 남는다면, (15-3)개, (21-3)

개를 똑같이 나누면 나누어 떨어진다. 이러한 수 중 가장 큰 수는 12와 18의 최대공약수 6이다.

- 4. 사생대회 상품으로 학용품을 준비했다. 공책 45 권, 샤프 38 개, 지우개 32 개를 될 수 있는 대로 많은 학생들에게 똑같이 나누어 주었더니 공책 3 권, 샤프 2 개, 지우개 2 개가 남았다. 몇 명의 학생에게 나누어 주었는가?
 - ① 4명 ②6명 ③ 8명 ④ 10명 ⑤ 11명

학생 수는 45 - 3, 38 - 2, 32 - 2,

즉 42, 36, 30 의 최대공약수이므로 6 명

- 5. 사과 26 개와 귤 31 개를 될 수 있는 대로 많은 어린이들에게 똑같이 나누어 주려고 했더니 사과는 2 개가 부족하고, 귤은 5 개가 부족했다. 어린이는 모두 몇 명인가?
 - ① 3명 ②4명 ③6명 ④8명 ⑤ 12명

해설 어린이 수는 26+2=28, 31+5=36 의 최대공약수 4 (명)

- 6. 어떤 자연수로 35 를 나누면 나누어 떨어지고, 72 를 나누면 2 가 남는다고 한다. 이러한 자연수 중에서 가장 큰 자연수를 구하여라.
 - ▶ 답:

➢ 정답: 35

어떤 수는 35, 72 – 2 = 70 의 공약수이다.

이 중 가장 큰 수는 두 수의 최대공약수이므로 35 이다.

7. 공책 27 권, 지우개 38 개, 연필 64 자루를 되도록 많은 학생들에게 똑같이 나누어주려고 하였더니 공책은 3 권 남고, 지우개는 2 개가 남고, 연필은 4 자루가 남았다. 학생은 모두 몇 명인지 구하여라.

<u>명</u>

정답: 12명

--<u>--</u>

▶ 답:

해설

학생 수는 27 - 3 = 24, 38 - 2 = 36, 64 - 4 = 60 의 최대공약수 이므로

최대공약수는 2² × 3 = 12 ∴ 12 명

 $24 = 2^3 \times 3, 36 = 2^2 \times 3^2, 60 = 2^2 \times 3 \times 5$

.. 12 0

- **8.** 어떤 수로 33 을 나누면 나누어 떨어지고, 25 를 나누면 3이 남고, 51 을 나누면 4 가 모자란다고 한다. 이러한 수 중 가장 큰 수는?
 - ① 3 ② 7 ③ 11 ④ 13 ⑤ 15

어떤 수는 33, 25 - 3 = 22, 51 + 4 = 55 의 공약수이다. 이 중 가장 큰 수는 세 수의 최대공약수이므로 11 이다.

- 9. 사과 62 개와 귤 116 개를 될 수 있는 대로 많은 학생에게 똑같이 나누어 주면, 사과는 2 개가 남고, 귤은 6 개가 남는다고 한다. 이때, 학생 수를 구하면?
 - ① 10 명 ② 12 명 ③ 3 명 ④ 5 명 ⑤ 15 명

해설

학생 수는 62 - 2 = 60, 116 - 6 = 110 의 최대공약수이므로 10 (명)

 10.
 어떤 수로 35 를 나누면 3 이 남고 118 을 나누면 2 가 모자란다고 한다. 이러한 수 중 가장 큰 수는?

 ① 16
 ②8
 ③6
 ④4
 ④2
 2

32 와 120 의 최대공약수이므로 8 이다.

11. 어떤 수로 37 을 나누면 1 이 남고 116 을 나누면 4 가 모자란다고 한다. 이러한 수 중 가장 큰 수를 구하여라.

답:

▷ 정답: 12

해설

36 과 120 의 최대공약수이므로 12 이다.

- 12. 어떤 자연수로 50 을 나누면 2 가 남고, 35 를 나누면 3 이 남고, 87 을 나누면 7 이 남는다고 한다. 이러한 수 중에서 가장 큰 수를 구하여라.

▶ 답: ➢ 정답: 16

해설

구하는 수는 50 - 2 = 48, 35 - 3 = 32, 87 - 7 = 80 의 최대공

약수이다. 그러므로, 이 세수의 최대공약수를 구하면. 16입니다. 13. 어떤 자연수로 38을 나누면 2가 남고, 27을 나누면 3이 남고, 125로 나누면 5가 남는다고 한다. 이러한 자연수 중에서 가장 큰 수를 구하여라.

▷ 정답: 12

▶ 답:

38 - 2 = 36, 27 - 3 = 24, 125 - 5 = 120 에서 어떤 수는 36, 24,

해설

 120의 최대 공약수이다.

 6) 36 24 120

2) 6 4 20

3 2 10 최대공약수: $6 \times 2 = 12$

14. 190,315,134 를 어떤 자연수로 나누었더니 나머지가 각각 1,0,8 이었다. 어떤 수를 모두 구하여라.

답:답:

 답:

 ▷ 정답:
 9

▷ 정답: 21

➢ 정답: 63

해설

나머지가 각각 1,0,8 이므로 189,315,126 의 공약수가 어떤 수이다.

그러므로 9,21,63

15. 어떤 자연수로 63 을 나누면 3 이 남고 41 을 나누면 5 가 남는다고 한다. 이런 자연수 중 가장 큰 수는?

① 6 ② 8 ③ 12 ④ 15 ⑤ 30

63 - 3 = 60 , 41 - 5 = 36 이므로 구하는 가장 큰 수는 60 과 36 의 최대공약수 12 이다.

16. 어떤 수로 35 를 나누면 3 이 남고 118 을 나누면 2 가 모자란다고 한다. 이러한 수 중 가장 큰 수는?

① 16 ②8 ③ 6 ④ 4 ⑤ 2

어떤 자연수를 x 라고 할 때, $35 = x \times \Delta + 3$, $118 = x \times \Box - 2$ $32 = x \times \Delta$, $120 = x \times \Box$ 가장 큰 수 x 는 32 와 120 의 최대공약수

 $32 = 2^5, \ 120 = 2^3 \times 3 \times 5$ $\therefore \ x = 2^3 = 8$

 $\therefore x = 2^{\circ} = 8$

- 17. 사과 26 개와 귤 31 개를 될 수 있는 대로 많은 어린이들에게 똑같이 나누어 주려고 했더니 사과는 2 개가 남고, 귤은 5 개가 부족했다. 어린이는 모두 몇 명인가?
 - ① 3명 ② 4명 ③ 6명 ④ 8명 ⑤ 12명

해설 어린이 수는 26 - 2 = 24, 31 + 5 = 36 의 최대공약수 12 (명) **18.** 사과 68 개, 귤 111 개, 배 82 개를 될 수 있는대로 많은 학생에게 똑같이 나누어 주면, 사과는 8 개가 남고, 귤은 1 개가 남고 배는 8 개가 모자란다고 한다. 이때, 학생 수를 구하여라.

 답:
 명

 > 정답:
 10명

해설

학생 수는 68-8=60, 111-1=110, 82+8=90 의 최대공 약수이므로 10 (명) **19.** 38 을 나누면 2 가 남고 45 를 나누면 3 이 부족한 수의 합을 구하면?

① 9 ② 12 ③ 16 ④ 18 ⑤ 22

36 과 48 의 최대공약수는 12

12 의 약수 중 나머지 3 보다 큰 수들의 합을 구하면 4+6+12=22이다.

20. 43 을 어떤 자연수 n 으로 나누면 나머지가 3 이 된다. 또, 49 를 n 으로 나누면 나머지가 1 이 되고 74 를 n 으로 나누면 2 가 남는다. 이러한 자연수 n 을 모두 구하여라.

답:답:

_

 ▷ 정답: 4

 ▷ 정답: 8

해설

43 을 어떤 자연수 n 으로 나누면 나머지가 3

→ n 은 40 의 약수이다.(3 < n) 49 를 n 으로 나누면 나머지가 1

→ n 은 48 의 약수이다.

74 를 n 으로 나누면 2

→ *n* 은 72 의 약수이다. 위 세 조건을 만족하는 *n* 을 구하면 *n* = 4,8

21. 사탕 52개, 초콜릿 75개, 껌 103개를 가능한 한 많은 학생들에게 똑같이 나누어 주었더니 사탕은 2개가 부족하고, 초콜릿은 3개가 남았고, 껌은 5개가 부족했다. 몇 명의 학생에게 나누어 주려고 하였는지 구하여라.
답: <u>명</u>

_

▷ 정답: 18명

사탕은 2개 부족하고, 초콜릿은 3개 남고, 껌은 5개 부족하므로

해설

사탕은 54개, 초콜릿 72개, 껌 108개가 있으면 똑같이 나누어 줄수 있다. 따라서 구하는 학생 수는 54, 72, 108의 최대공약수인 18명이다.

22. 어떤 자연수로 45를 나누면 3이 남고, 60을 나누면 4가 남고, 85를 나누면 1이 남는다고 한다. 이를 만족하는 자연수 중 가장 큰 수는?

① 8 ② 10 ③ 12 ④ 14 ⑤ 16

45를 나누면 3이 남고, 60을 나누면 4가 남고, 85를 나누면 1이 남으므로 어떤 자연수는 42, 56, 84 의 공약수이다. 따라서 이

중 가장 큰 자연수는 42, 56, 84의 최대공약수인 14이다.

나누면 4 가 남는다. 자연수 n 은 1 보다 큰 자연수 p 로 나누어 떨어진다. p 를 모두 구하여라.

23. 68 을 어떤 두 자리 자연수 n 으로 나누면 5 가 남고, 109 를 n 으로

▶ 답:

답:

▶ 답:

➢ 정답: 3

▷ 정답: 7

➢ 정답: 21

68을 어떤 자연수 n으로 나누면 나머지가 $5 \rightarrow n$ 은 5보다 크고,

해설

약수이다.

63 의 약수이다. 109 를 *n* 으로 나누면 나머지가 4 → *n* 은 4 보다 크고, 105 의

자연수 n은 1 보다 큰 자연수 p 로 나누어 떨어진다는 것은 p 가 1 을 제외한 n 의 약수이다.

위 두 조건을 만족하는 n 의 값은 n=21,

 $\therefore p = 3, 7, 21$

24. 서로 맞물려 도는 두 톱니바퀴 A, B 가 있다. A 의 톱니의 수가 36, B 의 톱니의 수가 48 이다. 이 두 톱니바퀴가 처음과 같은 톱니에서 다시 물릴 때에는 B 는 적어도 몇 회전한 후인지 구하여라.

회전 ▶ 답: ➢ 정답: 3<u>회전</u>

 $36 = 2^2 \times 3^2, \, 48 = 2^4 \times 3$ 의 최소공배수는 $2^4 \times 3^2 = 144$ 이다. ∴ B 의 회전수는 $\frac{144}{48} = 3$ (회전)

- 25. 가로의 길이가 $6\,\mathrm{cm}$, 세로의 길이가 $8\,\mathrm{cm}$, 높이가 $12\,\mathrm{cm}$ 인 직육면체 모양의 벽돌을 빈틈없이 쌓아서 가장 작은 정육면체 모양을 만들려고 한다. 이때, 정육면체의 한 모서리 길이는?
 - \bigcirc 24 cm ② $32 \,\mathrm{cm}$ ③ $48 \,\mathrm{cm}$ ④ $50 \,\mathrm{cm}$ ⑤ $54 \,\mathrm{cm}$

정육면체의 한 변의 길이는 6, 8, 12 의 공배수이어야 하고, 가장 작은 정육면체를 만들려면 한 변의 길이는 $6,\ 8,\ 12$ 의 최소공배 수이어야 한다. 따라서 정육면체의 한 모서리의 길이는 $24\,\mathrm{cm}$ 이다. 2) 6 8 12

- 2) 3 4 6
- 3) 3 2 3

해설

- 1 2 1

26. $\frac{18}{n}$ 과 $\frac{24}{n}$ 를 자연수로 만드는 n 중에서 가장 큰 수는?

① 1 ② 2 ③ 3 ④6 ⑤ 9

 $\frac{18}{n}$, $\frac{24}{n}$ 를 자연수로 만드는 n 중에서 가장 큰 수는18과 24의 최대공약수인 6 이다.

- 27. 남자 70 명, 여자 56 명인 어떤 모임에서 조 대항 장기자랑을 하려고 한다. 조별 인원수가 같고, 각 조에 속하는 남녀의 비가 같도록 최대한 많은 수의 조를 짤 때, 각 조별 남, 녀의 수는?
 - ① 남:7명,여:6명 ② 남:6명,여:5명
 - ③ 남:6명,여:4명 ④ 남:5명,여:5명
 - ⑤남:5명,여:4명

조의 개수는 70 과 56 의 최대공약수이다.

해설

 $70 = 2 \times 5 \times 7$, $56 = 2^3 \times 7$ 따라서 조의 개수는 $2 \times 7 = 14$ (개) 조별 남학생의 수는 $70 \div 14 = 5($ 명), 여학생의 수는 $56 \div 14 = 4($ 명)이다.

- 28. 현중이는 가로, 세로의 길이가 각각 $24 \mathrm{cm}$, $36 \mathrm{cm}$ 인 직사각형 모양의 대형 초콜릿을 남는 부분 없이 모두 같은 크기의 정사각형 모양으로 잘라 친구들에게 나누어 주려고 한다. 가능한 한 큰 정사각형으로 자르려고 할 때, 정사각형의 한 변의 길이는?
 - $\bigcirc 6\,\mathrm{cm}$ 4 12 cm 2 8 cm 3 10 cm \bigcirc 24 cm

자르려고 하는 정사각형의 모양의 초콜릿은 24 와 36 의 공약수 이다. 그런데 가능한 한 큰 정사각형 모양으로 자른다고 했으므로 한

변의 길이는 24 와 36 의 최대공약수이다. 2) 24 36

 $\begin{array}{c|cccc}
\hline
2 & 12 & 18 \\
\hline
 & 2 \times 2 \times 3 = 12 \text{ (cm)}
\end{array}$ 3) 6 9 2 3

- 29. 세 변의 길이가 각각 $66 \, \mathrm{m}, \, 84 \, \mathrm{m}, \, 78 \, \mathrm{m}$ 인 삼각형 모양의 목장이 있다. 이 목장의 가장자리를 따라 일정한 간격으로 향나무를 심으려고 한다. 세 모퉁이는 반드시 향나무를 심어야 하며 나무의 개수는 될 수 있는 한 적게 하려고 할 때, 향나무를 최소한 몇 그루를 준비해야 하는지 고르면?

① 6 그루

- ② 18 그루 ③ 24 그루 ③ 38 그루⑤ 41 그루

해설

66, 84, 78 의 최대공약수는 6 이므로

나무의 수는 $(66 \div 6) + (84 \div 6) + (78 \div 6) = 11 + 14 + 13$

= 38 (그루)

- 30. 사과 54 개와 귤 19 개를 될 수 있는 대로 많은 어린이들에게 똑같이 나누어 주려고 했더니 사과는 2 개가 남고, 귤은 3 개가 부족했다. 어린이는 모두 몇 명인가?
 - ① 2 명 ② 4 명 ③ 6 명 ④ 8 명 ⑤ 12 명

해설

어린이 수는 54-2=52, 19+3=22 의 최대공약수 2 (명)

- **31.** 서울에서 세 개의 도시로 버스가 각각 10 분, 15 분, 12 분마다 출발한다 고 한다. 오전 8 시 20 분에 이 세 방면으로 버스가 동시에 출발했다면 그 후에 세 버스가 동시에 출발하는 시간은?
 - ① 오전 9 시 ③ 오후 1 시 10 분 ④ 오후 2 시
- ② 오전 10 시 40 분
 - ⑤ 오후 2 시 20 분

해설 버스가 동시에 출발하는 간격은 10, 12, 15 의 최소공배수 60

(분)이다. 즉, 1 시간 간격이므로 매시 20 분에 동시에 출발하므로 오후 2

시 20분이다.

- 32. 톱니의 수가 각각 48 개, 72 개인 두 톱니바퀴 A, B 가 서로 맞물려 돌고 있다. 두 톱니바퀴가 같은 이에서 다시 맞물리는 것은 A 가 적어도 몇 번 회전한 후인가?
 - ① 1번 ② 2번 ③3번 ④ 4번 ⑤ 5번

48 과 72 의 최소공배수는 144 144÷48 = 3

마라서 두 톱니바퀴가 같은 이에서 다시 맞물리는 것은 A가

해설

적어도 3번 회전한 후이다.

33. 가로의 길이가 10cm, 세로의 길이가 6cm 인 타일이 있다. 이것을 붙여서 제일 작은 정사각형을 만들 때, 모두 몇 개의 타일이 필요한지 구하여라. 개

▷ 정답: 15 <u>개</u>

▶ 답:

해설

조건을 만족하는 가장 작은 정사각형의 한 변의 길이는 10 과 6

의 최소공배수이므로 10 과 6 의 최소공배수를 구하면 30 이다. 필요한 타일의 개수는

 $(30 \div 10) \times (30 \div 6) = 3 \times 5 = 15$, 즉 15 개를 붙이면 최소의

정사각형이 된다.

- ${f 34.}$ 가로, 세로, 높이가 각각 ${f 18,10,\ 6}$ 인 벽돌이 있다. 이 벽돌을 쌓아 가장 작은 정육면체를 만들 때, 필요한 벽돌의 개수는?
- ① 90 개 ② 450 개 ③ 545 개

(4) 675 개 (5) 735 개

정육면체의 한 모서리의 길이는 18, 10, 6 의 최소공배수이므로 90 이다.

해설

필요한 벽돌의 개수는 $(90 \div 18) \times (90 \div 10) \times (90 \div 6) = 5 \times 9 \times 15 = 675$ (개) 이다.

35. 가로의 길이가 8cm, 세로의 길이가 16cm, 높이가 20cm 인 직육면체 모양의 벽돌이 있다. 이것을 같은 방향으로 놓이도록 쌓아서 정육면 체를 만들 때, 이러한 정육면체 중 가장 작은 것의 한 모서리의 길이와 필요한 벽돌의 개수를 옮게 구한 것은?

② $16 \mathrm{cm}$, 80 개

③ 36cm , 100 개

- ④ 40cm, 200 개 ⑤ 80cm, 200 개
- , 200 ii

해설 벽돌의 한 모서리의 길이는 8, 16, 20 의 최소공배수이므로 80

① 8cm , 80 개

이다. 한 모서리의 길이는 $80\mathrm{cm}$ 이고, 필요한 벽돌의 개수는 $(80 \div 8) \times (80 \div 16) \times (80 \div 20) = 10 \times 5 \times 4 = 200 \ (개) \, \mathrm{이다}.$

36. 가로의 길이가 16cm, 세로의 길이가 20cm, 높이가 8cm 인 직육 면체 모양의 나무토막을 같은 방향으로 빈틈없이 쌓아서 가장 작은 정육면체를 만들려고 한다. 만들어지는 정육면체의 한 변의 길이를 구하여라.

② 80cm

③ 90cm

 $\textcircled{4} \ 100 \mathrm{cm}$

해설

 \bigcirc 70cm

 \bigcirc 110cm

가장 작은 정육면체 한 모서리의 길이는 16, 20, 8 의 최소공배 수이다. 2) 16 20 8

2) 8 10 4 5 2

2) 4 2 5 1

 $\therefore 2 \times 2 \times 2 \times 2 \times 5 = 80 \text{(cm)}$

- **37.** 세 자연수 2, 5, 8 의 어느 것으로 나누어도 1 이 남는 가장 작은 자연수를 구하면?
 - ① 2 ② 16 ③ 21 ④ 41 ⑤ 80

- 해설 그리노

구하는 수는 (2, 5, 8 의 공배수)+1 인 수 중 가장 작은 자연수이다. 2, 5, 8 의 최소공배수는 40 이다. ∴ 40+1=41

38. 세 수 6, 7, 8 어느 것으로 나누어도 나머지가 2 인 가장 작은 세 자리의 자연수는?

① 101 ② 113 ③ 122 ④ 164 ⑤ 170

구하는 수를 A 라 하면

해설

A = (6, 7, 8의 공배수) + 2 인 수 중 가장 작은 세 자리 자연수 이다. 6, 7, 8 의 최소공배수는 168 이다.

따라서 A = 168 + 2 = 170 이다.

39. 두 자연수 24, 30 중 어떤 수로 나누어도 나머지가 5인 세 자리의 자연수 중 가장 큰 자연수와 가장 작은 자연수의 차는?

① 360 ② 480 ③ 600 ④ 720 ⑤ 840

- 해설 24 양 3

24 와 30 의 최소공배수를 구하면 120 이다. 가장 작은 자연수 120 + 5 = 125, 가장 큰 수 960 + 5 = 965 이다. 따라서 두 수의 차는 965 - 125 = 840 이다.

- **40.** 어떤 수를 15, 24로 나누면 모두 2가 남는다고 한다. 이러한 수 중에서 가장 작은 세 자리의 수는?
 - ① 120 ② 121 ③ 122 ④ 123 ⑤ 124

15, 24로 나누면 모두 2가 남는 수 중 가장 작은 수는 24와 15

해설

의 최소공배수보다 2가 더 큰 수이다. 따라서 24, 15 의 최소공배수는 120 이므로 구하는 수는 122 이다.

- **41.** 자연수 N 과 24 의 최대공약수는 6 이고 최소공배수는 120 일 때, 자연수 N 을 구하여라.
 - 답:

➢ 정답: 30

N 과 24 의 최대공약수가 6 이므로

해설

N = 6n 이라 하면

 $6 \times n \times 4 = 120, \ n = 5$

 $\therefore N = 6 \times 5 = 30$

- **42.** 두 수의 곱이 $2^3 \times 3^5 \times 7^2$ 이고, 최대공약수가 $2 \times 3^2 \times 7$ 일 때, 두 수의 최소공배수는?

 - ① $2 \times 3 \times 7$ ② $2^2 \times 3^3 \times 7$ ③ $2 \times 3^2 \times 7$

해설

(두 수의 곱)=(최대공약수)×(최소공배수)이므로 $2^3 \times 3^5 \times 7^2 = 2 \times 3^2 \times 7 \times ($ 최소공배수) 최소공배수는 $2^2 \times 3^3 \times 7$ 이다.

43. 두 수 $2^2 \times 5$, A 의 최대공약수가 2×5 , 최소공배수가 $2^2 \times 3^2 \times 5$ 일 때, A 를 구하여라.

답:▷ 정답: 90

 $\overline{}$ 두 수 A, B 의 최대공약수를 G, 최소공배수를 L 이라 하면

 $A \times B = L \times G$ 이므로 $(2^2 \times 5) \times A = (2 \times 5) \times (2^2 \times 3^2 \times 5) = 2^3 \times 3^2 \times 5^2$ 이다. $\therefore A = 2 \times 3^2 \times 5 = 90$

44. 1부터 200까지의 자연수 중에서 3의 배수이거나 5의 배수인 수는 모두 몇 개인지 구하여라.

개

정답: 93 <u>개</u>

1부터 200까지의 자연수 중 3의 배수의 개수는 66개

해설

▶ 답:

1부터 200까지의 자연수 중 5의 배수의 개수는 40개 1부터 200까지의 자연수 중 3의 배수이면서 5의 배수인 것의 개수는 13개 1부터 200까지의 자연수 중 3의 배수이거나 5의 배수인 것의 개수는 66+40-13=93

- **45.** $\frac{24}{n}$ 와 $\frac{40}{n}$ 을 자연수로 만드는 자연수 n 들을 모두 합하면?
 - ① 8 ② 12 ③ 15 ④ 20 ⑤ 25

n 은 24, 40 의 공약수이고, 공약수는 최대공약수의 약수이다. 24 와 40 의 최대공약수는 8 이고, 8 의 약수는 1, 2, 4, 8 이므로 따라서 합은 1+2+4+8=15 이다.

때다가 함는 1 + 2 + 4 + 0 = 10 기대

- 46. 두 분수 $\frac{7}{26}$, $1\frac{17}{39}$ 의 어느 것에 곱하여도 그 결과가 자연수가 될 때, 곱하는 분수 중 가장 작은 분수를 $\frac{a}{b}$ 라 할 때, a-b 의 값은?
 - ① 33 ② 40 ③ 51 ④ 65 ⑤ 71

 $\frac{7}{26}$ $1\frac{17}{39} = \frac{56}{39}$ 이므로

 $\frac{a}{b} = \frac{(26 \text{과 } 39 \text{의 최소공배수})}{(7 \text{과 } 56 \text{의 최대공약수})} = \frac{78}{7}$

 ∴ a - b = 78 - 7 = 71

47. 어느 반의 여학생 수는 36 명이고 남학생 수는 45 명이다. 봉사활동을 하기 위해 여학생 a 명과 남학생 b 명씩을 한 조로 나누려고 한다. 이때 되도록 많은 조로 나누어서 나누어진 조의 수를 c 라 할 때, 2a-b+c의 값을 구하여라.

답:

➢ 정답: 12

c 는 36 과 45 의 최대공약수이므로 c=9 ,

해설

 $a=36 \div 9=4$, $b=45 \div 9=5$ 따라서 2a-b+c=8-5+9=12

48. 가로의 길이, 세로의 길이, 높이의 길이가 각각 45cm, 60cm, 90cm 인 상자 속에 정육면체 모양의 과자 상자가 빈틈없이 들어있다. 과자 상자가 가장 적을 때의 개수는?

① 180 개 ② 72 개 ③ 36 개 ④ 24 개 ⑤ 15 개

해설

과자 상자가 가장 적을 때 과자 상자 한 모서리의 길이가 가장 크므로 상자 한 모서리의 길이는 45, 60, 90 의 최대공약수인 15cm 이다. 따라서 상자의 개수는 $(45 \div 15) \times (60 \div 15) \times (90 \div 15) = 72$ (개)

49. 한 개의 원주 위를 같은 방향으로 일정한 속도로 움직이는 세 점 A, B, C 가 있다. 점 A 는 한 바퀴 도는 데 8초 걸리고, 점 B 는 1 분에 20 바퀴, 점 C 는 1 분에 30 바퀴를 돈다고 한다. 어떤 시각에 A, B, C 가 동시에 점 P 를 통과했을 때, 이 시각에서 15 분 후 사이에는 점 P 를 동시에 몇 번 통과하는지 구하여라.

<u>번</u> ▶ 답:

정답: 37번

한 바퀴 도는 데 A 는 8 초, B 는 3 초, C 는 2 초가 걸리므로

해설

 $8,\ 3,\ 2$ 의 최소공배수인 24 초마다 점 P 를 동시에 통과한다. 15×60 = 900(초) 에서 900÷24 = 37.5 이므로 37 번 통과한다. **50.** 7로 나누면 나머지가 6, 6으로 나누면 나머지가 5, 5로 나누면 나머지가 4, 4로 나누면 나머지가 3, 3으로 나누면 나머지가 2가 되는 최소의 자연수에서 각자리 숫자의 합을 구하여라.

V 0H:

해설

조건을 만족하는 수는 (7, 6, 5, 4, 3 의 공배수)-1 의 꼴이고

7, 6, 5, 4, 3 의 최소공배수는 420 이다. 따라서 최소의 자연수는 420 - 1 = 419 이다. ∴ 4+1+9=14

.. 4 + 1 + 3 - 14

51. 두 자리의 두 정수의 최소공배수가 792 이고 최대공약수가 11 이라고 한다. 이때, 이를 만족하는 두 정수의 합을 구하면?

① 87 ② 99 ③ 175 ④ 183

⑤187

해설 $792 = 2^3 \times 3^2 \times 11$ 이고, 두 수는 최대공약수 11 의 배수이고,

두 자리 수이므로 $11 \times 2^3 = 88$ 과 $11 \times 3^2 = 99$ 가 된다. $\therefore 88 + 99 = 187$

52. a,b 의 최대공약수는 7 , 두 수의 곱이 588일 때, (a,b)의 개수는?

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

a, b 의 최대공약수가 7 이므로

a=7x,b=7y (x,y)는 서로소, x<y) 라 하면 $7x\times7y=588$ 이다. 따라서 $x\times y=12$ 즉, (x,y)는 (1,12),(3,4) 이므로 (a,b)는 (7,84),(21,28) 이다. 따라서 2 개이다.

53. 어떤 분수를 두 분수 $\frac{21}{8}$ 과 $\frac{35}{12}$ 에 각각 곱하였더니 그 결과가 모두 자연수가 되었다. 곱한 수 중에서 가장 작은 분수를 구하여라.

▶ 답:

ightharpoonup 정답: $\frac{24}{7}$