•
$$-9a^3b + 6a^2b$$
의 인수가 아닌 것은?

①
$$a^2b$$

(4) -3ab

$$\bigcirc$$
 ab^2

⑤
$$3a - 2$$

 \bigcirc -3b

- 해설
$$-9a^3b + 6a^2b = -3a^2b(3a-2)$$

2.
$$1 < x < 4$$
 일 때, $\sqrt{x^2 - 2x + 1} - \sqrt{x^2 - 8x + 16}$ 을 간단히 하면?

(5) 3x + 1

①
$$2x-2$$
 ② $2x+1$ ③ $2x-5$

(4) 3x - 1

$$\sqrt{x^2 - 2x + 1} - \sqrt{x^2 - 8x + 16}$$

$$= \sqrt{(x - 1)^2} - \sqrt{(x - 4)^2}$$

$$= |x - 1| - |x - 4|$$

$$= x - 1 + x - 4 = 2x - 5$$

①
$$9x - 7y$$

9x + 49y

$$2 3x + 9y$$

3x + 7y

$$3x + 49y$$

$$9x^2 - 49y^2 = (3x)^2 - (7y)^2 = (3x - 7y)(3x + 7y)$$

4. 다항식 $x^2 + 4x - 12$ 이 두 일차식의 곱으로 인수 분해될 때, 두 일차식의 합을 구하여라.

 \triangleright 정답 : 2x+4

$$x^2 + 4x - 12 = (x+6)(x-2)$$

 \therefore (일차식의 합) = $x+6+x-2=2x+4$

①
$$2x + 5$$
 ② $x - 3$

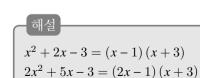
③ x + 3

$$4 \ 2x - 5$$
 $5 \ 2x + 3$

다음 중 $2x^2 - x - 15$ 의 인수를 모두 고르면?(정답 2개)

 $2x^2 - x - 15 = (2x + 5)(x - 3)$

②
$$(a+b)^2 = (a-b)^2$$

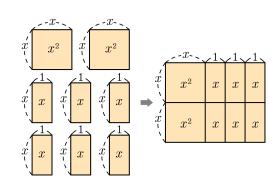

$$(a+b)^2 = a^2 + b^2$$

$$(a-b)(-a-b) = (a-b)(a+b)$$

$$(b+a)(b-a) = (-b-a)(b+a)$$

①
$$(a-b)^2 = \{-(a-b)^2\} = (a-b)^2$$

7. 두 이차식 $x^2 + 2x - 3$, $2x^2 + 5x - 3$ 의 공통인 인수를 구하여라.


8. $2x^2 + ax + b$ 을 인수분해하면 (2x+1)(x+1)이 된다. 이때 a+b를 구하면?

①
$$-5$$
 ② 5 ③ 7 ④ -4 ⑤ 4

해설
$$(2x+1)(x+1) = 2x^2 + 3x + 1$$

$$a = 3, b = 1$$

 $a = 3, b = 4$

9. 다음 그림의 직사각형의 넓이의 합과 넓이가 같은 직사각형을 만들 때, 그 직사각형의 가로, 세로의 길이가 될 수 있는 것은?

(1)x + 3, 2x

- ② x + 6, 2x
- ③ x+1, 3x+1

- 4 x+3, 2x+1 5 x+6, 2x+3

$$2x^2 + 6x = 2x(x+3)$$

10. 직사각형의 넓이가 $3a^2 + a - 10$ 이고 가로의 길이가 a + 2 일 때, 이 직사각형의 세로의 길이를 구하면?

(3) -3a + 3

(2) -3a + 5

(5) 2a + 5

(1) 3a + 5

4 3a - 5

해설 $3a^2+a-10=(a+2)(3a-5)$ 이므로 세로의 길이는 3a-5 이다.

11. 4x - 3 이 $4x^2 - ax + 6$ 의 인수일 때, a 의 값을 구하여라.

$$4x^{2} - ax + 6 = (4x - 3)(x + p)$$
$$= 4x^{2} + 4px - 3x - 3p$$
$$= 4x^{2} + (4p - 3)x - 3p$$

$$-3p = 6, p = -2$$
 이고,
 $4p - 3 = -a, a = 11$ 이다.

12.
$$\frac{4}{25}ax^2 - 2ax + \frac{25}{4}a$$
 를 인수분해했을 때 인수가 아닌 것을 모두 고르면?

①
$$\frac{2}{5}ax - \frac{5}{2}$$
 ② a ③ $\left(\frac{2}{5}x - \frac{5}{2}\right)^2$ ④ $\frac{2}{5}x - \frac{5}{2}$

$$\frac{4}{25}ax^2 - 2ax + \frac{25}{4}a = a\left(\frac{2}{5}x - \frac{5}{2}\right)^2$$

13. 이차식
$$ax^2 + 30x + b$$
 를 완전제곱식으로 고치면 $(cx+3)^2$ 일 때, $\frac{b}{a+c}$ 의 값을 구하면?

①
$$\frac{1}{10}$$
 ② $\frac{3}{10}$ ③ $\frac{1}{5}$ ④ $\frac{3}{5}$ ⑤ $\frac{1}{2}$

$$ax^{2} + 30x + b = (cx + 3)^{2} = c^{2}x^{2} + 6cx + 9$$

$$\Rightarrow a = c^{2}, \ 30 = 6c, \ b = 9$$

$$\Rightarrow a = 25, \ c = 5, \ b = 9$$
따라서 $\frac{b}{a+c} = \frac{9}{25+5} = \frac{9}{30} = \frac{3}{10}$ 이다.

14. $4x^2 + ax + 16 = (bx + c)^2$ 에서 a + b + c의 값은? (단, b > 0, c < 0)

①
$$-7$$
 ② -10 ③ -12 ④ -15 ⑤ -18

$$4x^2 + ax + 16 = (2x - 4)^2$$
이므로
 $a = -16, b = 2, c = -4$
 $\therefore a + b + c = -16 + 2 - 4 = -18$

15. 이차식
$$9x^2 + 10x - k$$
 가 완전제곱식이 될 때, 상수 k 의 값은?

①
$$\frac{25}{9}$$
 ② $\frac{5}{3}$ ③ $\frac{10}{3}$ ④ $-\frac{25}{9}$ ⑤ $-\frac{5}{3}$

해설
$$(3x)^2 + 2 \times 3x \times \frac{5}{3} - k$$
이므로 $-k = \left(\frac{5}{3}\right)^2$
$$\therefore k = -\frac{25}{9}$$

16. x 에 대한 이차식 (3x+2+a)(3x+2a-4) 가 완전제곱식이 되는 상수 a 의 값을 구하여라.

$$2 + a = 2a - 4$$

$$-a = -6$$

$$\therefore a = 6$$

17. $a = 2 - \sqrt{3}$ 일 때, 다음 식의 값을 구하면?

$$\sqrt{a^2 - 2 + \frac{1}{a^2}} + \sqrt{a^2 + 2 + \frac{1}{a^2}}$$

①
$$2(2-\sqrt{3})$$

$$4 + \sqrt{3}$$
 $2 + \sqrt{3}$

$$a = 2 - \sqrt{3}$$
 이면 $0 < a < 1$ 이므로

$$\sqrt{\left(a-\frac{1}{a}\right)^2} + \sqrt{\left(a+\frac{1}{a}\right)^2} = -\left(a-\frac{1}{a}\right) + \left(a+\frac{1}{a}\right)$$
$$= \frac{2}{a} = \frac{2}{2-\sqrt{3}}$$

② $2(1+\sqrt{3})$

(3) $2(2+\sqrt{3})$

$$-a - 2 - \sqrt{3}$$

$$= 2\left(2 + \sqrt{3}\right)$$

18. $a = 1 - \sqrt{3}$ 일 때.

$$\frac{4}{\sqrt{a^2-4+rac{4}{a^2}}+\sqrt{a^2+4+rac{4}{a^2}}}$$
 를 구하여러

$$ightharpoonup$$
 정답: $-1 + \sqrt{3}$

$$\left(a-\frac{2}{a}\right) > 0$$
이고 $\left(a+\frac{2}{a}\right) < 0$ 이므로

$$\sqrt{a^2 - 4 + \frac{4}{a^2}} = \sqrt{\left(a - \frac{2}{a}\right)^2} = a - \frac{2}{a}$$

$$\sqrt{a^2 + 4 + \frac{4}{a^2}} = \sqrt{\left(a + \frac{2}{a}\right)^2} = -a - \frac{2}{a}$$

$$\sqrt{a^2 - 4 + \frac{4}{a^2}} + \sqrt{a^2 + 4 + \frac{4}{a^2}} = -\frac{4}{a}$$

$$\therefore \frac{1}{\sqrt{a^2 - 4 + \frac{4}{a^2}} + \sqrt{a^2 + 4 + \frac{4}{a^2}}}$$

$$= \frac{4}{4} = -a = -1 + \sqrt{3}$$
이다.

19.
$$a = \frac{1}{\sqrt{2}+1}$$
, $b = \frac{1}{\sqrt{2}-1}$ 일 때, $a^2 - b^2$ 의 값을 구하여라.

$$a = \frac{1}{\sqrt{2} + 1} = \sqrt{2} - 1, \ b = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1$$
$$a^2 - b^2 = (a + b)(a - b)$$
$$= (\sqrt{2} - 1 + \sqrt{2} + 1)(\sqrt{2} - 1 - \sqrt{2} - 1)$$
$$= 2\sqrt{2}(-2) = -4\sqrt{2}$$

20. 정수 a 에 대해서 $a^2 + 6a - 27$ 의 절댓값이 소수이다. a 가 될 수 있는 정수를 모두 합하여라.

해설
$$a^2 + 6a - 27 = (a+9)(a-3) 의 절댓값이 소수이므로 a가 될 수 있는 수는 4, 2, -8, -10이다.$$
따라서 합은 -12이다.

21. 다음 식에서
$$A + B + C$$
 의 값은? $(x + A)(Bx + 3) = 2x^2 + Cx - 12$

$$(x+A)(Bx+3) = 2x^2 + Cx - 12$$
에서 x 의 이차항의 계수가 2이므로 $B=2$ 상수항이 -12 이므로 $A=-4$ $(x-4)(2x+3) = 2x^2 - 5x - 12$ 이므로 $C=-5$

A + B + C = -4 + 2 - 5 = -7

22.
$$(3x - 2y)(4x - 3y) = ax^2 + bxy + cy^2$$
일 때, $a + b + c$ 의 값을 구하여

$$(3x - 2y) (4x - 3y) = 12x^2 - 17xy + 6y^2$$

 $\therefore a + b + c = 12 - 17 + 6 = 1$

23. $(2x-1)^2 + (3x-2)(3x+2) = ax^2 + bx + c$ 일 때, a+b+c의 값은?

$$(2x-1)^{2} + (3x-2)(3x+2)$$

$$= 4x^{2} - 4x + 1 + 9x^{2} - 4$$

$$= 13x^{2} - 4x - 3$$

$$= ax^{2} + bx + c$$

$$a = 13, b = -4, c = -3$$

a+b+c=13-4-3=6

24. 이차식 $8x^2 + (4k-6)x - 15$ 를 인수분해하면 (2x+3)(4x-5) 이라고한다. 이때, k 의 값으로 알맞은 것을 고르면?

해설
$$(2x+3)(4x-5) = 8x^2 + 2x - 15,$$

$$4k - 6 = 2$$

$$k = 2$$

25. 다음 두 식의 공통인 인수를 구하여라.

$$a^2 - a - 2$$
, $(a - 1)^3 - a + 1$

$$a^{2} - a - 2 = (a - 2) (a + 1)$$
$$(a - 1)^{3} - a + 1 = (a - 1) \{(a - 1)^{2} - 1\}$$

$$= a \left(a - 1 \right) \left(a - 2 \right)$$

26. xy + y - x - 1 과 $x^2 - xy + x - y$ 의 공통인 인수를 구하여라.

$$xy + y - x - 1 = y(x+1) - (x+1)$$
$$= (x+1)(y-1)$$

$$x^{2} - xy + x - y = x(x - y) + (x - y)$$
$$= (x + 1)(x - y)$$

27. 이차식 $ax^2 - 7x + b$ 가 (2x - 1) 와 (3x - 2) 를 인수로 가질 때, ab 의 값을 구하면?

① 4 ② 7 ③ 12 ④ 15 ⑤ 18

$$(2x-1)(3x-2) = 6x^2 - 7x + 2$$
= $ax^2 - 7x + b$
∴ $a = 6, b = 2$
∴ $ab = 12$

28. $x^2 + ax - 20$ 의 인수 중 하나가 x + 4 일 때, a 의 값은?

$$x^{2} + ax - 20 = (x+4)(x-5) \quad \therefore a = -1$$

29. x-1 이 $3x^2-ax-4$ 의 인수일 때, a 의 값을 구하여라.

- ▶ 답:
- ▷ 정답: a = -1

또 다른 인수를 (Ax + B) 라 하면

$$(x-1)(Ax + B) = Ax^2 - Ax + Bx - B$$

= $3x^2 - ax - 4$

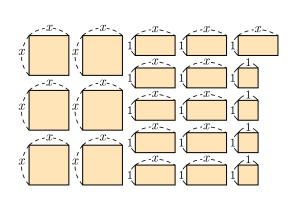
A = 3, B = 4, a = A - B = -1

30. 이차식 $x^2 + Ax + B$ 를 인수 분해하는데 준식이는 일차항의 계수를 잘못 보아 (x+4)(x+3) 이 되었고, 효진이는 상수항을 잘못 보아 (x+1)(x+7) 이 되었다. 다음 중 $x^2 + Ax + B$ 를 옳게 인수 분해한 것은?

① (x+2)(x+6) ② (x+1)(x+6) ③ (x-2)(x-6)

(4)
$$(x-1)(x-6)$$
 (5) $(x+3)(x+4)$

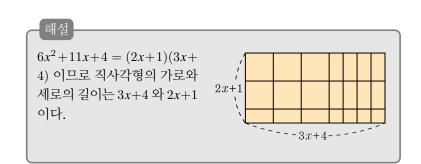
준식이는 $x^2 + 7x + 12$ 에서 상수항 12 를 맞게 보았고, 효진이는 $x^2 + 8x + 7$ 에서 x 의 계수 8 을 맞게 보았다. 따라서 주어진 이차식은 $x^2 + 8x + 12 = (x + 2)(x + 6)$


31. 다음은 이차식 $x^2 + ax + b$ 을 갑, 을이 인수분해한 것이다. 이 때, a + b 의 값을 구하여라.

- (1) 갑은 x 항의 계수를 잘못 보고 (x+5)(x+3) 으로 인수분해 하였다.
- (2) 을은 상수항을 잘못 보고 (x-2)(x-6) 으로 인수분해 하였다.
- ▶ 답:
- \triangleright 정답: a+b=7

갑이 푼 이차식은 (x+5)(x+3) 이므로 $x^2+8x+15$ 이고, x 항의 계수를 잘못 보았으므로 상수항은 +15 이다. 을이 푼 이차식은 (x-2)(x-6) 이므로 $x^2-8x+12$ 이고, 상수항을 잘못 보았으므로 x 항의 계수는 -8 이다. ∴ a=-8, b=+15

$$a + b = -8 + (+15) = 7$$


32. 다음에 주어진 도형을 이용하여 식을 세워 직사각형의 넓이로 나타내었을 때 직사각형의 가로 또는 세로의 길이가 될 수 있는 것을 모두고르면?

- ① x + 4
- $4 \ 3x + 2$
 - (5) 3x + 4

2x + 1

(3) 2x + 3

33. 세로의 길이가 2a+4이고 넓이가 $6a^2+18a+12$ 인 직사각형의 둘레의 길이는?

①
$$10a + 12$$
 ② $10a + 14$ ③ $12a + 12$ ④ $12a + 14$