(좌변) = $\frac{(2+i)(1-4i)}{(1+\sqrt{2}i)(1-\sqrt{2}i)}$

 $=\frac{2-8i+i-4i^2}{1-2i^2}$

 $=\frac{6-7i}{2}=2-\frac{7}{2}i$ 이므로

여 a - 3b 의 값을 구하여라.

답:

해설

등식 $\left(\frac{2+i}{1+\sqrt{2}i}\right)\left(\frac{1-4i}{1-\sqrt{5}i}\right) = a+bi$ 를 만족하는 실수 a, b 에 대하

$$2 - \frac{7}{3}i = a + bi$$

복소수가 서로 같을 조건에 의하여
 $a = 2, b = -\frac{7}{3}$
 $\therefore a - 3b = 2 - 3 \times \left(-\frac{7}{3}\right) = 2 + 7 = 9$

2.
$$i^{2000} + i^{2002} + i^{2003} + i^{2004}$$
의 값을 구하면?

① 1 ②
$$1-i$$
 ③ $1+i$ ④ -1 ⑤ 0

$$i^4 = 1$$
 이므로
$$i^{4k} = 1, i^{4k+1} = i, i^{4k+2} = -1, i^{4k+3} = -i$$
 (준식) = $1 + (-1) + (-i) + 1$ = $1 - i$

3. 복소수
$$(1+2i)x-(2+i)y+i$$
를 제곱하였더니 -9 가 되었다. 이 때, $x+y$ 의 값은? (단, $i=\sqrt{-1}$ 이고 x, y 는 실수이다.)

$$z = (x - 2y) + (2x - y + 1)i$$

$$z^{2} = -9$$
즉, z는 순하수이다.
$$\therefore x - 2y = 0, (2x - y + 1)^{2} = 9$$

해설

$$x = 2y + 2x - y + 1 = \pm 3$$
을 연립하여 풀면
$$y = \frac{2}{3} \to x = \frac{4}{3}$$

$$y = -\frac{4}{3} \rightarrow x = -\frac{8}{3}$$
$$\therefore x + y = 2 \, \text{또는 } -4 \, \text{이다.}$$

$$oldsymbol{a}$$
. $\alpha=1+i,\;eta=1-i$ 일 때, $\dfrac{lpha^2}{eta}+\dfrac{eta^2}{lpha}$ 의 값을 구하면?

$$\alpha + \beta = 2, \ \alpha\beta = 2$$

$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$$

$$= \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta}$$

$$= \frac{8 - 12}{2}$$

$$= -2$$

5. 복소수 z 에 대하여 다음 보기 중 항상 실수인 것을 <u>모두</u> 고르면?(단, \overline{z} 는 z 의 켤레복소수이고 $z \neq 0$ 이다

$$(z - \overline{z})^2 = (2bi)^2 = -4b^2$$

$$(\overline{z}) \frac{1}{z} - \frac{1}{\overline{z}} = \frac{a - bi}{a^2 + b^2} - \frac{a + bi}{a^2 + b^2} = \frac{-2bi}{a^2 + b^2}$$