- 1. x 에 대한 다항식 $4x^3 3x^2 + ax + b$ 가(x+1)(x-3)을 인수로 갖도록 a+b의 값을 정하여라. ▶ 답:

▷ 정답: -37

해설 $P(x) = 4x^3 - 3x^2 + ax + b$ 라 하고 P(x) 가

(x+1)(x-3)을 인수로 가지려면 P(-1) = P(3) = 0

P(-1) = -4 - 3 - a + b = 0 : a - b = -7

P(3) = 108 - 27 + 3a + b = 0 : 3a + b = -81 $\therefore a = -22, b = -15$

2. $\frac{k}{3}(k+1)(k+2) + (k+1)(k+2)$ 와 같은 것은?

①
$$\frac{1}{6}(k+1)(k+3)(k+4)$$
 ② $\frac{1}{3}k(k+1)(k+2)$ ③ $\frac{1}{3}(k+1)(k+2)(k+3)$ ④ $\frac{1}{3}k(k+1)(k+2)(k+3)$ ⑤ $\frac{1}{4}(k+1)(2k+1)(3k+2)$

 $(k+1)(k+2) = \frac{3}{3}(k+1)(k+2)$ 이므로 공통인수 $\frac{1}{3}(k+1)(k+2)$ 로 묶으면 (준 식)= $\frac{1}{3}(k+1)(k+2)(k+3)$ **3.** $\frac{2x+3a}{4x+1}$ 가 x에 관계없이 일정한 값을 가질 때, 12a의 값을 구하시오.

➢ 정답: 12a = 2

▶ 답:

 $\frac{2x+3a}{4x+1} = k \ (일정값 = k \) 라 놓으면 \ 2x+3a = k(4x+1) 에서$ (2-4k)x+3a-k=0 이 식은 x에 대한 항등식이므로, $2-4k=0, \ 3a-k=0$ $k=\frac{1}{2} 이므로 \ 3a=k 에서 \ a=\frac{1}{6}$ $\therefore \ 12a=2$

 $\therefore 12a = 2$

4. $\frac{2x + ay - b}{x - y - 1}$ 가 $x - y - 1 \neq 0$ 인 어떤 x, y의 값에 대하여도 항상 일정한 값을 가질 때, a - b의 값을 구하여라.

답:▷ 정답: -4

 $\frac{2x + ay - b}{x - y - 1} = k 라 놓으면$

2x + ay - b = k(x - y - 1)x, y에 대하여 정리하면,

(2-k)x + (a+k)y - b + k = 0위의 식이 x, y에 대한 항등식이어야 하므로

 $2 - k = 0, \ a + k = 0, \ -b + k = 0$ $\therefore k = 2, \ a = -2, \ b = 2$

 $\therefore a-b=-4$

- **5.** x에 대한 다항식 $x^3 + ax^2 x + b = x 3$ 로 나누었을 때 몫과 나머지를 다음과 같은 조립제법으로 구하려고 한다. a+b+c+d+k의 값을 구하면?
 - $k \mid 1 \quad a \quad -1 \quad b$ c d 33 1 4 11 37
- ① 19 ② 20 ③ 21 ④ 22
- **(5)** 23

다항식 $x^3 + ax^2 - x + b$ 를 x - 3로 나누었을 때의 몫과 나머지를

해설

조립제법을 이용하여 구하면 다음과 같다. $3 \mid 1 \qquad a \qquad -1$

이므로 k = 3, c = 3, a = 1, d = 12, b = 4따라서 a+b+c+d+k=1+4+3+12+3=23

- 다항식 $2x^2 + xy + 5x y^2 + 2y + 3$ 가 (2x + ay + b)(x + cy + d)로 인수분해 될 때, a, b, c, d의 값을 차례로 적은 것은? **6.**

 - ① 1, 3, 1, 1 ② 1, 3, -1, 1

 $= \{2x - (y-3)\}\{x + (y+1)\}$ = (2x - y + 3)(x + y + 1)

 $\therefore a = -1, b = 3, c = 1, d = 1$

- **3**-1, 3, 1, 1
- 4 -1, 3, -1, 1 5 -1, -3, 1, 1

(준식) = $2x^2 + (y+5)x - (y^2 - 2y - 3)$

해설

- 7. 다항식 $P(x) = x^4 + 2x^3 + kx^2 2x + 8$ 가 x 1로 나누어 떨어지도록 상수 k의 값을 정할 때 다음 중 P(x)의 인수가 <u>아닌</u> 것은?
 - (4) x + 2 (5) x + 4① x-1 ② x+1 ③ x-2

P(x) = (x-1) Q(x)

- $\therefore P(1) = 1 + 2 + k 2 + 8 = 0$ $\therefore k = -9$
- $\therefore P(x) = x^4 + 2x^3 9x^2 2x + 8$

해설

- = (x-1)(x-2)(x+1)(x+4)

- **8.** 다항식 $x^{51} + 30$ 을 x + 1로 나누었을 때의 몫을 Q(x)라 하자. 이때, Q(x)를 x-1로 나눈 나머지를 구하면?
 - **③**1 ① -3 ② -2 ③ -1 ④ 0

 $x^{51}+30=(x+1)Q(x)+R$ 이라 하면 x = -1을 대입하면 R = 29

 $x^{51} + 30 = (x+1)Q(x) + 29$

Q(x)를 x-1로 나눈 나머지는

Q(1), x = 1식에 대입

31 = 2Q(1) + 29 $\therefore Q(1) = 1$

해설

 $f(x) = 3x^3 - x + 2$ 일 때, $f(x+1) = Ax^3 + Bx^2 + Cx + D$ 이다. 이 9. 때, A + B + C + D의 값을 구하면 ?

③ 24 ④ 34 ⑤ 44 ① 4 2 14

 $f(x+1) = Ax^3 + Bx^2 + Cx + D$ 에 x = 1 을 대입하면

f(2) = A + B + C + D이므로 f(2)를 구하기 위해서는

 $f(x) = 3x^3 - x + 2$ 에 x = 2 를 대입하면 $f(2) = 3 \times 2^3 - 2 + 2 = 24$

해설

해설

x+1=t 라 하면, $f(t) = A(t-1)^3 + B(t-1)^2 + C(t-1) + D$ 1 3 0 -1 2 1 3 3 2 4 1 3 6 8

 $\therefore A + B + C + D = 24$

 $\therefore A = 3, B = 9, C = 8, D = 4$

3 | 9

10. $x^4 - 11x^2 + 1$ 이 $(x^2 + ax + b)(x^2 + 3x + b)$ 로 인수분해될 때, a + b의 값은?

해설

① -1 ② -2 ③ -3 ④ -4 ⑤ -5

 $x^4 - 11x^2 + 1 = (x^2 - 1)^2 - 9x^2$ $= (x^2 - 1)^2 - (3x)^2$ $= (x^2 - 3x - 1)(x^2 + 3x - 1)$ $= (x^2 + ax + b)(x^2 + 3x + b)$ $\therefore a = -3, b = -1$ $\therefore a+b=-4$

- **11.** x^{100} 을 x+2 로 나눈 몫을 $a_{0+}a_1x+a_2x^2+\cdots+a_{99}x^{99}$ 라 할 때, $a_0+a_1+a_2+\cdots+a_{99}$ 의 값을 구하면? ① $\frac{1}{5}(1-2^{100})$ ② $\frac{1}{6}(1-2^{100})$ ③ $\frac{1}{4}(1-2^{100})$ ④ 3 $\frac{1}{4}(1-2^{100})$

- (i) $f(x) = x^{100} = (x+2)Q(x) + R$ 라 하면 $f(-2) = 2^{100} = R$
 - $R = 2^{100}$
 - f(1) = 3Q(1) + R
- $\therefore Q(1) = \frac{1}{3}(1 R) = \frac{1}{3}(1 2^{100})$ (ii) $Q(x) = a_0 + a_1 x + \dots + a_{99} x^{99}$ $\therefore Q(1) = a_0 + a_1 + \dots + a_{99}$
- - $\therefore a_0 + a_1 + \dots + a_{99} = Q(1) = \frac{1}{3}(1 2^{100})$

- **12.** x에 대한 항등식 $x^{1997}+x+1$ 을 x^2-1 로 나누었을 때의 몫을 Q(x)라 할 때, Q(x)의 모든 계수와 상수항의 합을 구하면?
 - ① 997 ② 998 ③ 1997 ④ $\frac{1997}{2}$ ⑤ $\frac{1997}{3}$

 $x^{1997} + x + 1 = (x^2 - 1)Q(x) + ax + b$ 라 하면 x = 1일 때, 3 = a + b x = -1일 때, -1 = -a + b $\therefore a = 2, b = 1$ $\therefore x^{1997} + x + 1 = (x^2 - 1)Q(x) + 2x + 1$ $x^{1997} - x = (x^2 - 1)Q(x)$ $x(x - 1)(x^{1995} + x^{1994} + \dots + x + 1)$

= (x-1)(x+1)Q(x) $\therefore x(x^{1995} + x^{1994} + \dots + x+1) = (x+1)Q(x)$ $Q(1) \circ Q(x) \circ Q(x) \circ Q(x)$ 모든 계수의 합이므로 x=1을 대입하면

2Q(1) = 1996 : $Q(1) = \frac{1996}{2} = 998$