(0, 3)

(0, 2)

$$\textcircled{4}$$
 (1, 3) $\textcircled{5}$ (2, 5)

$$y = x^2$$
의 그래프를 y 축의 방향으로 k 만큼 평행이동하면 $y = x^2 + k$ 점 $(1,3)$ 을 지나므로 $3 = 1 + k$

 $\therefore y = x^2 + 2$

(1) (3, 0)

해설

k = 2

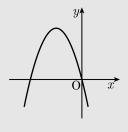
2. 이차함수 $y = x^2 - 6x + 2$ 의 그래프를 x 축의 방향으로 -3 만큼 평행이동하면 점(3, m) 을 지난다. m 의 값을 구하면?

해설

$$y = x^2 - 6x + 2 = (x - 3)^2 - 7$$
 을 x 축의 방향으로 -3 만큼
평행이동하면, $y = x^2 - 7$
 $(3, m)$ 을 대입하면 $m = 2$ 이다.

다음 중 $y = -x^2 - 4x$ 의 그래프가 지나지 않는 사분면은? 3.

- - 제 1 사분면 ② 제 2 사분면 ③ 제 3 사분면


- ④ 제 4 사분면⑤ 원점

$$y = -x^2 - 4x$$
$$y = -(x+2)^2 + 4$$

꼭짓점의 좌표는 (-2, 4) 인 위로 볼록한 그래프이다.

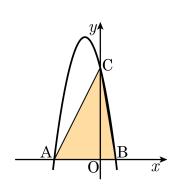
또 원점 (0, 0) 을 지난다.

따라서 $y = -x^2 - 4x$ 의 그래프는 다음 그림과 같고, 제 1 사분 면을 지나지 않는다.

- **4.** 이차함수 $y = -\frac{2}{3}x^2$ 에 대한 다음 설명 중 옳은 것은?
 - ① y의 값의 범위는 $y \ge 0$ 이다.
 - ② 아래로 볼록하다.
 - ③ 꼭짓점은 원점이고 축은 y축이다.
 - ④ $y = \frac{3}{2}x^2$ 의 그래프와 x축에 대하여 대칭이다.
 - ⑤ x > 0일 때, x의 값이 증가하면 y의 값도 증가한다.

해설

- ① y의 값의 범위는 y ≤ 0이다.
- ② 위로 볼록하다.
- ④ $y = \frac{2}{3}x^2$ 의 그래프와 x축에 대하여 대칭이다.
- ⑤ x > 0일 때, x의 값이 증가하면 y의 값은 감소한다.

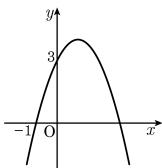

5. 다음 이차함수의 그래프가 x 축과 한 점에서 만나는 것은?

①
$$y = x^2 + 1$$

$$y = x^2 + 2x + 1$$

$$y = x^2 - 3x - 2$$

6. 다음 그림은 이차함수 $y = -x^2 - 4x + 12$ 의 그래프이다. \triangle ABC 의 넓이는?


① 12 ② 24 ③ 36 ④ 48 ⑤ 72

의 두 근이다. $x^2+4x-12=0\Leftrightarrow (x+6)(x-2)=0$ $x=-6,\ 2$ \therefore A(-6,0),B(2,0) 이고 $\overline{AB}=6-(-2)=8$ 이다. 점 C 는 y 절편이므로 C(0,12)이다.

 $\therefore \triangle ABC = \frac{1}{2} \times 8 \times 12 = 48$

최댓값은? *y*↑

7.

다음 그림은 이차함수 $y = ax^2 + 2x + c$ 의 그래프이다. 이차함수의

①
$$\frac{7}{2}$$
 ② 4 ③ $\frac{9}{2}$ ④ 5 ⑤ $\frac{11}{2}$

$$y = ax^2 + 2x + c$$
 에 점 $(-1, 0)$, $(0, 3)$ 을 대입하면 $0 = a - 2 + c$ $3 = c$, $a = -1$ $y = -x^2 + 2x + 3$ $\therefore y = -(x - 1)^2 + 4$

따라서 최댓값은 4 이다.

해설