1에서 100까지의 자연수를 다음과 같이 연속한 세 개의 수씩 묶어 차례로 늘어놓았다. $(1, 2, 3), (2, 3, 4), (3, 4, 5), \dots, (98, 99, 100)$ 0

때, 세 수의 합이 21의 배수인 것은 모두 몇 묶음인지 구하면?

28 에 가능한 한 작은 자연수 a 를 곱하여 어떤 자연수 b 의 제곱이 되도록 할 때, a 의 값은? (4) 5

3. $\frac{252}{A} = B^2$ 을 만족하는 자연수 A, B 에 대하여 B 의 최댓값은?

① 2 ② 3 ③ 6 ④ 8 ⑤ 14

1. 다음 보기를 보고 옳지 <u>않은</u> 것을 모두 고르면? 보기

- ① 정수는 모두 4개이다.
- ② 유리수는 모두 4개이다.
- ③ 양수는 모두 2개이다.
- ④ 음수는 모두 3개이다.
- ⑤ 정수가 아닌 유리수는 3개이다.

- - ① 3.5 ② -3.5 ③ 7 ④ -7 ⑤ 14

- ① 절댓값이 같은 수는 항상 2 개이다.
 - ② 0은 유리수이다.
 - ③ 두 유리수 사이에는 또 다른 유리수가 있다.
 - ④ -0.9 에 가장 가까운 정수는 0 이다.

다음 설명 중 옳은 것을 2개 찾으면?

③ 수직선 위에서 -5 와 3 에 대응하는 점에서 같은 거리에 있는 점에 대응하는 수는 1 이다. 다음 표는 가로, 세로, 대각선의 방향으로 각 수를 더해도 그 합은 모두 같다고 할 때, a 에 알맞은 수를 구하면?

	9	-4
a		3
		4

8.
$$(-3) - (-10) - (-18) + (-6)$$
 을 계산한 값은?
① -20 ② -15 ③ -6 ④ 19 ⑤ +37

9. 다음 계산 과정 중 (1), (2), (3) 에서 이용된 법칙을 차례로 말하면? $(-20) \times \left(\frac{1}{2} - \frac{1}{5}\right) - (-10)$ —

$$=(-20) \times \left(\frac{1}{2}\right) + (-20) \times \left(-\frac{1}{5}\right) - (-10)$$

$$=(-10) + (+4) - (-10)$$

$$=(+4) + (-10) + (+10)$$

$$=(+4) + 0$$

$$=4$$

$$(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

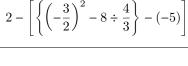
$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$

$$=(1)$$


$$=(1$$

② 분배법칙, 결합법칙, 교환법칙 ③ 교환법칙, 분배법칙, 결합법칙

결합법칙, 분배법칙, 교환법칙

④ 분배법칙, 교환법칙, 결합법칙

⑤ 교환법칙, 결합법칙, 분배법칙

11. 옛날부터 우리나라에는 십간(⋈⋈)과 십이지(⋈⋈⋈)를 이용하여 매해에 이름을 붙였다. 십간과 십이지를 차례대로 짝지으면 다음과 같이 그 해의 이름을 만들 수 있다. 다음 표에서 알 수 있듯이 2011년은 신묘년이다. 다음 중 신묘년이 <u>아닌</u> 해는?

정	무	기	경	신	임	계
축	인	묘	진	사	어	ㅁ
정축	무인	기묘	경진	신사	임오	계미
1997	1998	1999	2000	2001	2002	2003
을	병	정	무	기	경	신
_						
유	술	해	자	축	인	묘
유 을유	술 병술	해 정해	자 무자	축 기축	인 경인	묘 신묘

① 1831년

(

② 1881년

③ 1951년

갑 신 갑신 2004

④ 2071년

년 ⑤ 2131년

12. 약수의 개수가 12 개인 가장 작은 자연수를 구하면? 2 18 4 36

13. 두 자연수 *a*, *b* 의 최대공약수는 24 이다. *a*, *b*, 32 의 공약수를 모두 구하면? ① 1 ② 1. 2 ③ 1, 2, 4

⑤ 1, 2, 4, 8, 16

4 1, 2, 4, 8

14. 세 수 3×5^2 , $c^3 \times 3^a \times 5^2$, $2 \times 3 \times 5^b \times 7$ 의 최대공약수가 $d \times 5$ 이고. 최소공배수가 $2^3 \times 3^2 \times 5^2 \times 7$ 일 때, $\frac{d}{c} - \frac{b}{a}$ 의 값을 구하면?

① 0 ② 1 ③ 5 ④ 9 ⑤ 12

15. 두 자연수 A, B 에서 $A \times B$ 의 값이 1440 이고, 최대공약수가 12 일 때, 차가 가장 작은 두 자연수의 합은? (2) 36 (3) 72 (4) 84 (5) 108