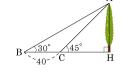


① $a\cos B$ ② $c\sin A$ ③ $\frac{a}{\cos B}$ ② $a\tan B$ ⑤ $\frac{ac}{\sin A}$

해설 sin B, tan B를 이용하여 푼다.

3. 다음 그림에서 나무의 높이는?



$$4 \ 20(\sqrt{3}-1)$$
 $20(\sqrt{3}+1)$

(2)
$$10(\sqrt{3} +$$

①
$$10(\sqrt{3}-1)$$
 ② $10(\sqrt{3}+1)$ ③ $10(3+\sqrt{3})$

해설

나무의 높이 $\overline{\mathrm{AH}}$ 를 x 라 하면

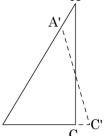
 $\overline{\text{CH}} = x, \overline{\text{BH}} = x + 40$ $\overline{AH} : \overline{BH} = x : x + 40 = 1 : \sqrt{3}$

 $\sqrt{3}x = x + 40 \Leftrightarrow (\sqrt{3} - 1)x = 40$

$$\therefore x = \frac{40}{\sqrt{3} - 1} = 20(\sqrt{3} + 1)$$

- 4. 다음 그림과 같은 ΔABC 에서 한 변의 길이는 20% 줄이고, 다른 한 변의 길이는 20% 늘여 서 새로운 삼각형 A'BC' 를 만들 때, \triangle A'BC' 의 넓이의 변화는?
 - ① 변함이 없다. ② 1% 줄어든다. ③ 4% 줄어든다. ④ 4% 늘어난다.

 - ⑤ 10% 줄어든다.

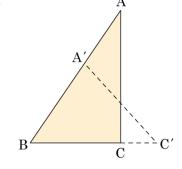


 $\overline{AB} = x$, $\overline{BC} = y$ 라 하면 $\overline{\mathbf{A}'\mathbf{B}} = \frac{80}{100}x = \frac{4}{5}x$

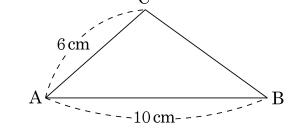
 $\overline{BC'} = \frac{120}{100}y = \frac{6}{5}y$ 따라서 $\triangle ABC$ 의 넓이는 $\frac{1}{2}xy\sin B$ 이고, $\triangle A'BC'$ 의 넓이는 $\frac{1}{2} \times \frac{4}{5}x \times \frac{6}{5}y \times \sin B = \frac{24}{25} \times \frac{1}{2}xy \sin B$ $= \frac{24}{25} \triangle ABC$ 그러므로 △A'BC' 는

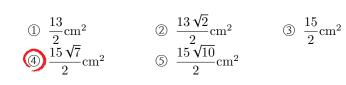
 $\triangle ABC$ 의 $\frac{24}{25} \times 100 = 96 \, (\%)$ 이므로 4% 줄어든다.

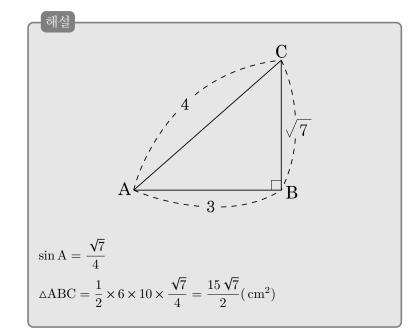
- **5.** 다음 그림과 같은 △ABC 에서 한 변 의 길이는 40% 줄이고, 다른 한 변의 길이는 40% 늘여서 새로운 삼각형 A'BC' 를 만들 때, △A'BC' 의 넓이 의 변화는?
 - ① 변함없다 ② 4% 줄어든다
 - ③ 4% 늘어난다
 - ④16% 줄어든다
 - ⑤ 16% 늘어난다



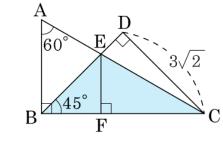
 $\overline{AB} = x$, $\overline{BC} = y$ 라 하면 $\overline{A'B} = \frac{60}{100}x = \frac{3}{5}x$ $\overline{BC'} = \frac{140}{100}y = \frac{7}{5}y$ 파라서 $\triangle ABC$ 의 넓이는 $\frac{1}{2}xy\sin B$ 이고, $\triangle A'BC'$ 의 넓이는 $\frac{1}{2} \times \frac{3}{5}x \times \frac{7}{5}y \times \sin B = \frac{21}{25} \times \frac{1}{2}xy\sin B$ $= \frac{21}{25}\triangle ABC$ 그러므로 △A'BC' 는 $\triangle ABC$ 의 $\frac{21}{25} \times 100 = 84 \, (\%)$ 이므로 16% 줄어든다. 6. 다음 그림과 같은 $\triangle ABC$ 에서 $\cos \angle A=\frac{3}{4}$ 일 때, $\triangle ABC$ 의 넓이는? (단, 0° < $\angle A$ 90°)







- 다음 그림과 같이 두 직각삼각자가 겹쳐져 있다. $\angle ABC = \angle BDC =$ 7. ∠DBC = 45° , ∠BAC = 60° 이고, $\overline{\rm DC}=3\sqrt{2}{\rm cm}$ 일 때, 겹쳐진 부분인 △EBC 의 넓이는?



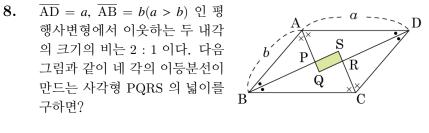
- ① $6(\sqrt{3}-1)\text{cm}^2$ $39(\sqrt{3}-1)\text{cm}^2$
- ② $6(\sqrt{3}+1)\text{cm}^2$ $4 27(\sqrt{3}-1)$ cm²
- ⑤ $12(\sqrt{3}-1)\text{cm}^2$

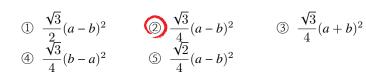
$\Delta \mathrm{DBC}$ 에서 $\overline{\mathrm{BC}} = \sqrt{(3\sqrt{2})^2 + (3\sqrt{2})^2} = 6(\mathrm{cm})$

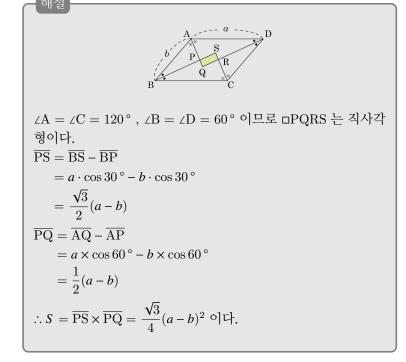
 ΔEBC 에서 $\overline{\text{EF}} = x$ 라 하면

 $\overline{BF} = \overline{EF} = x, \overline{FC} = \frac{\overline{EF}}{\tan 30^{\circ}} = \sqrt{3}x$ $\overline{BC} = \overline{BF} + \overline{FC} \text{ old } 6 = x + \sqrt{3}x$ $x = \frac{6}{\sqrt{3} + 1} = 3(\sqrt{3} - 1)$

 $\triangle EBC = \frac{1}{2} \times \overline{BC} \times \overline{EF} = \frac{1}{2} \times 6 \times 3(\sqrt{3} - 1) = 9(\sqrt{3} - 1)(\text{cm}^2)$







9. 다음 그림과 같은 평행사변형 ABCD 에서 ∠D 가 ∠A 의 크기의 2 배일 때, 네 각의 이등분선이 만드는 사각형 PQRS 의 넓이가 a√b 이다. a+b 의 값은?(단, b는 최소의 자연수)

① 1

② 2

③ 3

⑤ 5

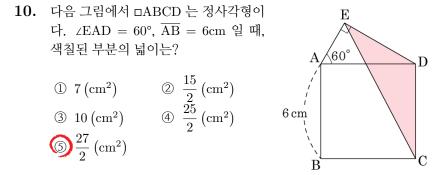
 $\angle A=\angle C=60\,^\circ$, $\angle B=\angle D=120\,^\circ$ 이므로 $\Box PQRS$ 는 직사각

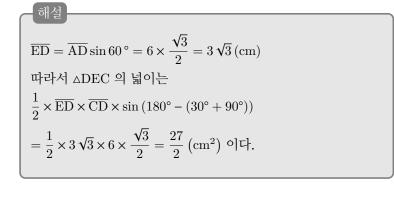
해설

형이다. $\overline{PS} = \overline{BS} - \overline{BP} = 6 \cdot \cos 60^{\circ} - 4 \cdot \cos 60^{\circ} = 2 \times \frac{1}{2} = 1$

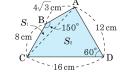
 $\overline{PQ} = \overline{AQ} - \overline{AP} = 6a \times \cos 30^{\circ} - 4 \times \cos 30^{\circ} = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}$

 $\therefore S = \overline{PS} \times \overline{PQ} = \sqrt{3}$ 이다. 따라서 a + b = 1 + 3 = 4 이다.





11. 다음은 □ABCD 의 넓이를 구하는 과정이다. () 안에 알맞은 것을 바르게 나열한 것은?



$$S_{1} = \frac{1}{2} \times 4\sqrt{3} \times 8 \times ()$$

$$= \frac{1}{2} \times 4\sqrt{3} \times 8 \times \frac{1}{2} = 8\sqrt{3}$$

$$S_{2} = \frac{1}{2} \times 12 \times 16 \times ()$$

$$= \frac{1}{2} \times 12 \times 16 \times \frac{\sqrt{3}}{2} = 48\sqrt{3}$$

$$\Box ABCD = S_{1} + S_{2} = 8\sqrt{3} + 48\sqrt{3} = 56\sqrt{3}(cm^{2})$$

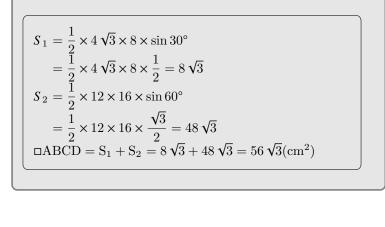
 30° , $\sin 60^{\circ}$

① $\tan 30^{\circ}, \tan 60^{\circ}$

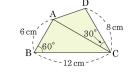
 $4 \sin 30^{\circ}, \tan 60^{\circ}$

② $\cos 30^{\circ}, \cos 60^{\circ}$

- $\Im \tan 30^{\circ}, \sin 60^{\circ}$



12. 다음 그림에서 □ABCD 의 넓이는?



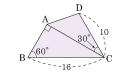
- ① $18\sqrt{3}$ cm² $4 27 \sqrt{3} \text{cm}^2$
- $21\sqrt{3}$ cm²
- $3 25 \sqrt{3} \text{cm}^2$
- $30\sqrt{3}$ cm²

 $\Box ABCD$ 의 넓이 $= \triangle ABC$ 의 넓이 $+ \triangle ACD$ 의 넓이 $\triangle ABC = \frac{1}{2} \times 6 \times 12 \times \sin 60^\circ = 18\sqrt{3} (\ cm^2)$

 $\overline{AC} = 12\sin 60^{\circ} = 6\sqrt{3}(\text{cm}^2)$

 $\triangle ACD = \frac{1}{2} \times 6\sqrt{3} \times 8 \times \sin 30^{\circ} = 12\sqrt{3} (\text{ cm}^{2})$ □ABCD 의 넓이= $18\sqrt{3} + 12\sqrt{3} = 30\sqrt{3} (\text{ cm}^{2})$

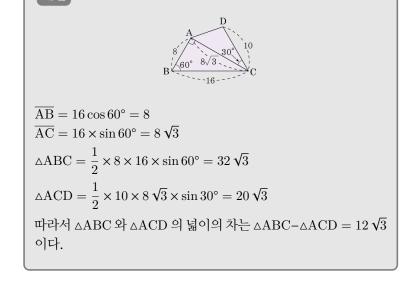
13. 다음 그림에서 $\triangle ABC$ 와 $\triangle ACD$ 의 넓이의 차는?



① 8 ② $8\sqrt{3}$

 $312\sqrt{3}$

(4) $52\sqrt{3}$ (5) $104\sqrt{3}$



14. 다음 그림에서 \triangle ABC 와 \triangle ACD 의 넓이의 차는?

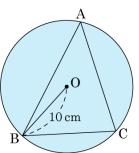
① $(9 + \sqrt{2}) \text{ cm}^2$ ② $10 \sqrt{3} \text{ cm}^2$ ③ $12 \sqrt{3} \text{ cm}^2$ $\textcircled{4} \ 14\sqrt{3} \ \text{cm}^2 \qquad \qquad \textcircled{5} \ 15\sqrt{3} \ \text{cm}^2$

 $\triangle ABC = \frac{1}{2} \times 4 \times 2\sqrt{3} \times \sin 30^{\circ} = 2\sqrt{3} (\,\mathrm{cm}^2)$ $\Delta ACD = \frac{1}{2} \times 8 \times 6 \times \sin 60^{\circ} = 12 \sqrt{3} (\,\mathrm{cm}^2)$

따라서 $\triangle ABC$ 와 $\triangle ACD$ 의 넓이의 차는 $\triangle ACD$ – $\triangle ABC$ =

 $10\sqrt{3}$ (cm²) 이다.

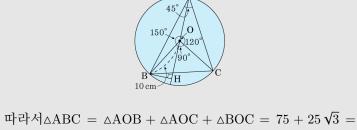
- **15.** 다음 그림의 ΔABC 에서 5.0ptÂB : 5.0ptBC : 5.0ptCA = 5 : 3 : 4 이고, 외
 - 접원 O 의 반지름은 10cm 일 때, △ABC
 - 의 넓이는?



- ① $15(5+\sqrt{3})$ cm²
- $3 25 \left(3 + \sqrt{3}\right) \text{cm}^2$ $(30 (5 + \sqrt{3}) \text{ cm}^2)$
- $32(5+\sqrt{3})$ cm²
 - $5.0 pt\widehat{AB}: 5.0 pt\widehat{BC}: 5.0 pt\widehat{CA} = 5:3:4$ 이므로 $\angle A: \angle B:$ ∠C = 3 : 4 : 5 이다.

② $20(5+\sqrt{3})$ cm²

- $\angle A = \frac{3}{12} \times 180^{\circ} = 45^{\circ}$ $\angle B = \frac{4}{12} \times 180^{\circ} = 60^{\circ}$
- $\angle C = \frac{5}{12} \times 180^{\circ} = 75^{\circ}$ $\Rightarrow \angle BOC = 90^{\circ}, \angle COA = 120^{\circ}, \angle AOB = 150^{\circ}$
- $\triangle AOB = \frac{1}{2} \times \overline{OA} \times \overline{BH} \; (\; \overline{BH} 는 삼각형의 높이)$ $\overline{
 m BH}=10\sin30\,^{\circ}{
 m cm}$ 이므로 $\Delta {
 m AOB}=rac{1}{2} imes10 imes10 imesrac{1}{2}=25$
- 같은 방법으로 $\triangle AOC = \frac{1}{2} \times 10 \times 10 \times \sin 60^{\circ} = 25 \sqrt{3} (\text{ cm}^2)$
- $\texttt{,} \triangle BOC = \frac{1}{2} \times 10 \times 10 \times \sin 90\, ^\circ = 50 (\,\mathrm{cm}^2)$



 $25(3+\sqrt{3})(cm^2)$ 이다.