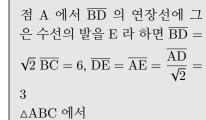

- 다음 그림과 같이 $\angle C = 90$ ° 인 $\triangle ABC$ 에서 1. $\overline{\mathrm{AD}} = \overline{\mathrm{CD}} = \overline{\mathrm{BC}} = 3\sqrt{2}$ 이코, $\angle \mathrm{ABD} = x$ 라 할 때, $\cos x$ 의 값은?

해설



 $B \stackrel{\checkmark}{\cancel{45^{\circ}}}$

þЕ

D

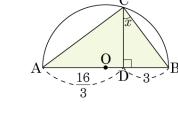
- △ABC 에서
- $\overline{AB} = \sqrt{\overline{AC^2 + BC^2}} \\
 = \sqrt{(6\sqrt{2})^2 + (3\sqrt{2})^2} \\
 = 3\sqrt{10}$

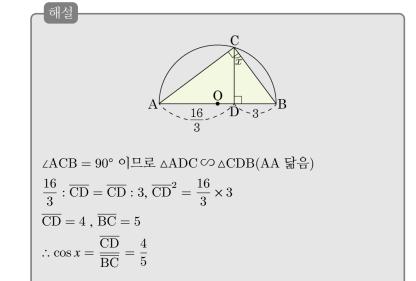
- $\frac{3\sqrt{10}}{10}$

2. $\tan A = \frac{1}{2}$ 일 때, $\frac{\cos^2 A - \cos^2 (90 \, \circ - A)}{1 + 2 \cos A \times \cos (90 \, \circ - A)}$ 의 값은?

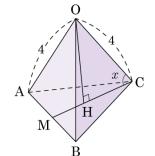
① $\frac{1}{2}$ ② $\frac{1}{3}$ ③ $\frac{1}{4}$ ④ $\frac{1}{6}$ ⑤ $\frac{1}{9}$

 $\cos(90^{\circ} - A) = \sin A$ $\sin^{2} x + \cos^{2} x = 1 \text{ 이 므로}$ $\left(\frac{\text{주산시}}{\text{-}}\right) = \frac{\cos^{2} A - \sin^{2} A}{\cos^{2} A + 2 \cos A \times \sin A + \sin^{2} A}$ $= \frac{(\cos A + \sin A)(\cos A - \sin A)}{(\cos A + \sin A)^{2}}$ $= \frac{\cos A - \sin A}{\cos A + \sin A} \text{ (:: } \cos A + \sin A \neq 0\text{)}$ $= \frac{1 - \frac{\sin A}{\cos A}}{1 + \frac{\sin A}{\cos A}} = \frac{1 - \tan A}{1 + \tan A}$ $= \frac{1}{3}$


다음 그림의 $\triangle ABC$ 에서 $\angle BAC=90^\circ$, $\overline{AH} \bot \overline{BC}$ 이고 $\angle HAC=x$ 라 3. 할 때, $\tan x$ 의 값은?


- ① $\frac{1}{3}$ ② $\frac{3}{5}$ ③ $\frac{3}{4}$ ④ $\frac{4}{5}$ ⑤ $\frac{4}{3}$

 \triangle AHC \hookrightarrow \triangle BAC (AA 닮음), $\angle x = \angle$ ABC


 $\therefore \tan x = \frac{\overline{AC}}{\overline{AB}} = \frac{6}{8} = \frac{3}{4}$

4. 다음 그림과 같이 \overline{AB} 를 지름으로 하는 반원 O 위의 점 C 에서 \overline{AB} 에 내린 수선의 발을 D라 하고, $\angle DCB = x$, $\overline{AD} = \frac{16}{3}$, $\overline{BD} = 3$ 일 때, $\cos x$ 의 값은?

다음 그림과 같이 모서리의 길이가 4 인 **5.** 정사면체의 한 꼭지점 O 에서 밑면에 내린 수선의 발을 H 라 하고, \overline{AB} 의 중점을 M이라 하자. $\angle OCH = x$ 라 할 때, $\tan x$ 의 값은? $\sqrt{2}$ $2\sqrt{2}$ $3\sqrt{2}$

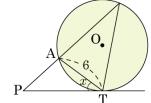
- ④ $\sqrt{3}$
- - ⑤ $3\sqrt{3}$

$$\overline{\text{CM}} = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$$

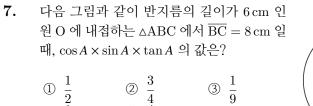
$$\overline{\text{CH}} = 2\sqrt{2} \times \frac{2}{2} = 4\sqrt{3}$$

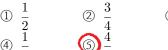
$$\overline{CH} = 4 \times \frac{2}{2} = 2 \sqrt{3}$$

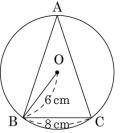
$$\overline{CH} = 2 \sqrt{3} \times \frac{2}{3} = \frac{4 \sqrt{3}}{3}$$

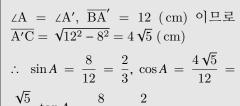

$$\overline{OH} = \sqrt{4^2 - \left(\frac{4 \sqrt{3}}{3}\right)^2} = \sqrt{\frac{32}{3}} = \frac{4 \sqrt{6}}{3}$$

$$\therefore \tan x = \frac{\overline{OH}}{\overline{CH}} = \frac{\frac{4 \sqrt{6}}{3}}{\frac{4 \sqrt{3}}{3}} = \sqrt{2}$$


$$\therefore \tan x = \frac{OH}{CH} = \frac{3}{\frac{4\sqrt{3}}{3}} = \sqrt{3}$$


- 다음 그림과 같이 원 O 에서 \overrightarrow{PT} 는 접선이고, $\overrightarrow{AT}=6$, $\tan x=\frac{3}{4}$ 일 때, 원 O 의반지름의 길이는? 6.
 - 2 4 ① 3 ⑤ 7 **4** 6



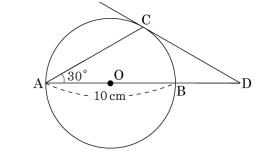


 $\tan x = \frac{3}{4}$ 이므로 $\sin x = \frac{3}{5}$ 이다. 원 O 의 반지름을 r 이라 하면, $x = \angle ABT$ 이므로 $\sin x = \frac{6}{2r} = \frac{3}{5}$ 이므로 원의 반지름은 5 이다.

지 $\frac{\sqrt{5}}{3}$, $\tan A = \frac{8}{4\sqrt{5}} = \frac{2}{\sqrt{5}}$ 따라서 $\cos A \times \sin A \times \tan A$ 의 값은 $\frac{\sqrt{5}}{3} \times \frac{2}{3} \times \frac{2}{\sqrt{5}} = \frac{4}{9}$ 이다.

6 cm

8. $\sqrt{(\cos A - \sin A)^2} + \sqrt{(\sin A + \cos A)^2} = \sqrt{2}$ 일 때, $\tan A$ 의 값은? (단, $0^\circ \le A \le 45^\circ$)


① $2\sqrt{2}$ ② $\sqrt{2}$ ③ $\sqrt{3}$ ④1 ⑤ 0

 $0^{\circ} \le A \le 45^{\circ}$ 에서 $\cos A - \sin A \ge 0$ 이므로

(준시) = $(\cos A - \sin A) + (\sin A + \cos A)$ = $2\cos A = \sqrt{2}$

즉, $\cos A = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$ 에서 $\angle A = 45^{\circ}$ $\therefore \tan A = \tan 45^{\circ} = 1$

9. 다음 그림과 같이 선분 AB 를 지름으로 하는 원 O 위의 한 점 C 에서 의 접선과 지름 AB 의 연장선과의 교점을 D 라 한다. $\overline{AB}=10\,\mathrm{cm}$, $\angle BAC=30^\circ$ 일 때, \overline{BD} 의 길이는?

① 3cm ④ 4.5cm ② 3.5cm ③ 5cm 3 4cm

해설

점 B 와 C 를 이으면 ∠BCD = ∠BAC = 30°
∠ACB = 90° 이므로 ∠ABC = 60°
△CBD 에서
∠BDC = ∠ABC - ∠BCD = 60° - 30° = 30°
∴ BD = BC = 10 sin 30° = 10 × 1/2 = 5 (cm)

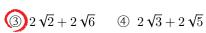
10. $\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 89^\circ + \sin^2 90^\circ$ 의 값을 구하여라.

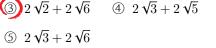
① 45 ② $\frac{91}{2}$ ③ 46 ④ $\frac{93}{2}$ ⑤ 47

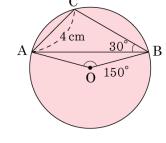
 $\sin^2 1^\circ = \cos^2 89^\circ$ $\sin^2 2^\circ = \cos^2 88^\circ$ ⋮ $\sin^2 44^\circ = \cos^2 46^\circ$ ∴ $(\stackrel{?}{\leftarrow} \stackrel{\checkmark}{\rightarrow}) = \cos^2 1^\circ + \cos^2 2^\circ + \dots + \cos^2 44^\circ$ $+ \sin^2 44^\circ + \dots + \sin^2 2^\circ + \sin 1^\circ$ $+ \sin^2 45^\circ + \sin^2 90^\circ$ $= 1 \times 44 + \frac{1}{2} + 1$ $= \frac{91}{2}$

- 11. 다음 그림과 같이 $5.0 \mathrm{pt} \widehat{AB}$ 에 대한 원주
 - 각의 크기가 60° 이고, $\overline{AB}=8\,\mathrm{cm}$ 인 원 O 에 대하여 색칠된 부분의 넓이를 구하 0• 여라. -8cm--
- - ① $16\pi 2\sqrt{3}$ (cm²) ② $16\pi \frac{4\sqrt{3}}{3}$ (cm²) ③ $\frac{16}{9}\pi \frac{8\sqrt{3}}{3}$ (cm²) ③ $\frac{4}{9}\pi \frac{16}{3}\sqrt{3}$ (cm²) ⑤ $\frac{4}{9}\pi \frac{16}{3}\sqrt{3}$ (cm²)

-8 cm -


- 원의 반지름의 길이를 r 이라 하면 $\overline{AC'}\sin 60^\circ = 8, \overline{AC'} =$ $\frac{16\sqrt{3}}{3} \text{ (cm)}$
- $\therefore r = \frac{1}{2}\overline{AC'} = \frac{8\sqrt{3}}{3} \text{ (cm)}$ ∠AOB = 120°이므로 부채꼴 AOB


의 넓이는 $\frac{1}{3} \times \pi \times \left(\frac{8\sqrt{3}}{3}\right)^2 = \frac{64}{9}\pi$


- 따라서 색칠된 부분의 넓이는 $\frac{64}{9}\pi - \frac{1}{2} \times \left(\frac{8\sqrt{3}}{3}\right)^2 \times \sin 120^{\circ}$
- $=\frac{64}{9}\pi \frac{16\sqrt{3}}{3}$ (cm²) 이다.

12. 다음 그림의 원 O 와 □AOBC 에서 $\overline{\rm AC}$ = 4 cm, $\angle \rm ABC$ = 30 °, $\angle \rm AOB$ = 150°일 때, AB 의 길이는?

① $2\sqrt{2} + 2\sqrt{3}$ ② $2\sqrt{2} + 2\sqrt{5}$

 $\angle ACB = \frac{360 \degree - 150 \degree}{2} = 105 \degree$

 $\angle CAB = 180^{\circ} - (105^{\circ} + 30^{\circ}) = 45^{\circ}$ ΔABC 의 점 C 에서 \overline{AB} 에 내린 수선의 발을 H 라 하면 \overline{AH} =

 $\overline{\mathrm{CH}} = 4\cos 45\,^{\circ} = 2\,\sqrt{2}\ (\,\mathrm{cm})$ $\overline{\rm BH} = \frac{\overline{\rm CH}}{\tan 30^{\circ}} = 2\sqrt{2} \times \sqrt{3} = 2\sqrt{6} \ (\,{\rm cm})$

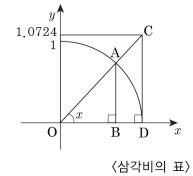
 $\therefore \ \overline{\rm AB} = \overline{\rm AH} + \overline{\rm BH} = 2\sqrt{2} + 2\sqrt{6} \ (\,\rm cm)$

- ① $\frac{4\sqrt{3}}{3}$ ② $\frac{11\sqrt{3}}{3}$ ② $\frac{17\sqrt{2}}{4}$

 $\triangle ABC$ 에서 $\tan 30^{\circ} = \frac{\overline{AB}}{\overline{BC}}$,

$$\frac{\sqrt{3}}{3} = \frac{x}{4} \therefore x = \frac{4\sqrt{3}}{3}$$

$$\frac{\sqrt{3}}{3} = \frac{x}{4} \therefore x = \frac{4\sqrt{3}}{3}$$


$$\triangle BCD \text{ odd } \tan 45^\circ = \frac{\overline{CD}}{\overline{BC}},$$

$$1 = \frac{y}{4} \therefore y = 4$$

$$\therefore xy = \frac{4\sqrt{3}}{3} \times 4 = \frac{16\sqrt{3}}{3}$$

$$4\sqrt{3}$$

14. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 표를 이용하여 \overline{BD} 의 길이를 구하면?

x cos

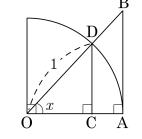
x	$\sin x$	$\cos x$	tan x
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

4 0.7314

① 0.2807

② 0.3179 ⑤ 0.9657

③ 0.6821



 $\tan x = \overline{\text{CD}} = 1.0724$ $\therefore x = 47^{\circ}$

 $\overline{\mathrm{BD}} = \overline{\mathrm{OD}} - \overline{\mathrm{OB}}$ 이므로 $\overline{\mathrm{OB}} = \cos x = \cos 47^{\circ}$

 $\therefore \overline{BD} = 1 - 0.6821 = 0.3179$

15. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 $\overline{OC}=0.59$ 일 때, $\overline{AB}+\overline{CD}$ 의 길이를 구하면?

\boldsymbol{x}	$\sin x$	$\cos x$	tan x
53°	0.80	0.60	1.33
54°	0.81	0.59	1.38
55°	0.82	0.57	1.43
56°	0.83	0.56	1.48

① 2.25 ② 1.38

③2.19

④ 1.93

⑤ 0.81

 $\overline{OC} = 0.59$ 이므로 $x = 54^{\circ}$ 이다.

해설

 $\overline{CD} = 1 \times \sin 54^{\circ} = 1 \times 0.81 = 0.81$ $\overline{AB} = 1 \times \tan 54^{\circ} = 1 \times 1.38 = 1.38$

 $AB = 1 \times \tan 54^{\circ} = 1 \times 1.38 = 1.3$ $AB + \overline{CD} = 1.38 + 0.81 = 2.19$