- 수직선 위의 점 A (-2) , B (-1) , C (5) 가 있을 때, 두 점 사이의 거리 1. \overline{AB} , \overline{BC} 를 구하면?

 - ① $\overline{AB}=2$, $\overline{BC}=5$ ② $\overline{AB}=1$, $\overline{BC}=5$
 - $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$
 - $\overline{\text{3}}\overline{\text{AB}} = 1, \, \overline{\text{BC}} = 6$ $\overline{\text{4}}\overline{\text{AB}} = 2, \, \overline{\text{BC}} = 6$

 $\overline{AB} = -1 - (-2) = 1$

 $\overline{BC} = 5 - (-1) = 6$

 ${f 2.}$ 두 점 ${f A}(3,-1),{f B}(a,-3)$ 에 대하여 ${f \overline{AB}}=2$ 일 때, a의 값을 구하면?

① 1 ② 2

$$\overline{AB}^{2} = (a-3)^{3} + (-3+1)^{2} = 4$$

$$a^{2} - 6a + 9 = 0$$

$$(a-3)^{2} = 0$$

$$\therefore a = 3$$

3. 두 점 A (-1,1), B (1,5)에서 같은 거리에 있는 y축 위의 점의 좌표는?

① (3,0) ② (5,0) ③ (0,3) ④ (0,5) ⑤ (0,7)

y 축 위의 점을 (0,a)라 하면 ∴ 1² + (a - 1)² = 1² + (a - 5)² 정리하면 a = 3

해설

- **4.** 직선 x + y = 2 위에 있고, 두 점 A(2,3), B(3,2)에 이르는 거리가 같은 점 P의 좌표는?
 - 3 (3,-1) 5 (4,-2)
 - ① (0,2) ② (1,1) ③ (2,0)

해설

점 P의 좌표를 P(a, 2 - a) 로 놓으면

 $\frac{PA}{PA} = \sqrt{(a-2)^2 + (2-a-3)^2} \\
= \sqrt{2a^2 - 2a + 5}$

 $\overline{PB} = \sqrt{(a-3)^2 + (2-a-2)^2}$ $= \sqrt{2a^2 - 6a + 9}$ 그런데 $\overline{PA} = \overline{PB}$ 이므로 $\overline{PA}^2 = \overline{PB}^2$ 에서

 $2a^2 - 2a + 5 = 2a^2 - 6a + 9$

4a=4 에서 a=1

∴ P(1, 1)

- 5. 세 점 A(1,2), B(3,-2), C(-5,-1) 을 꼭짓점으로 하는 삼각형 ABC는 어떤 삼각형인가?

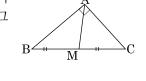
 - ① 이등변 삼각형 ② 예각삼각형
 - ⑤ ∠C = 90° 인 직각삼각형
 - ③ $\angle A=90\,^{\circ}$ 인 직각삼각형 ④ $\angle B=90\,^{\circ}$ 인 직각삼각형

 $\overline{AB} = \sqrt{(3-1)^2 + (-2-2)^2} = \sqrt{20} = 2\sqrt{5}$ $\overline{BC} = \sqrt{(-5-3)^2 + (-1+2)^2} = \sqrt{65}$ $\overline{CA} = \sqrt{(1+5)^2 + (2+1)^2} = \sqrt{45} = 3\sqrt{5} \text{ odd}$

 $\overline{\mathrm{BC}}^2 = \overline{\mathrm{AB}}^2 + \overline{\mathrm{CA}}^2$ 이므로 $\Delta\mathrm{ABC}$ 는 $\angle\mathrm{A} = 90\,^\circ$ 인 직각삼각형

이다.

다음은 $\angle A=90\,^{\circ}$ 인 직각삼각형 ABC에서 $\overline{AB}^2+\overline{AC}^2=\overline{BC}^2$ 을 증명한 것이다. 다음 그 림과 같이 변 BC의 중점을 M이라 하면 6.



 $\overline{AB}^2 + \overline{AC}^2 = \boxed{\text{Ph}} \left(\overline{BM}^2 + \boxed{\text{Lh}}^2 \right)$

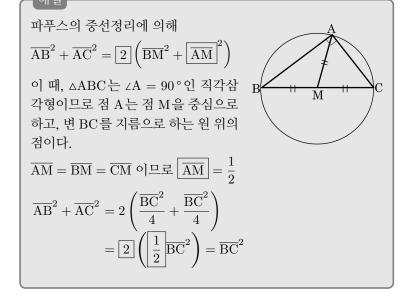
이 때, $\overline{\mathrm{BM}} = \frac{1}{2}\overline{\mathrm{BC}}$ 이고, (나) = (다) BC 이므로

$$\overline{AB}^2 + \overline{AC}^2 = \boxed{\text{OH}} \left(\boxed{\text{CH}} \overline{BC}^2 \right)$$

$$= \overline{BC}^2$$

위의 증명에서 (개, (내, 따), 예에 알맞은 것을 순서대로 적은 것은?

- ① 3, $2\overline{AM}$, $\frac{1}{2}$, $\frac{1}{3}$ ② 4, $2\overline{AM}$, $\frac{1}{2}$, $\frac{1}{4}$ ③ 2, \overline{AM} , $\frac{1}{2}$, $\frac{1}{2}$ ④ 2, \overline{AM} , $\frac{1}{4}$, $\frac{1}{2}$ ⑤ $\frac{16}{5}$, \overline{AM} , $\frac{1}{4}$, $\frac{5}{16}$



7. 두 점 A(2, -5), B(-1, 1)에 대해서 선분 AB를 2:1로 내분하는 점 P 의 좌표를 구하면?

① (0,0) ② (2,-1) ③ (1,-1) ④ (0,-1)

해설

내분점 공식을 이용하면, $P = \left(\frac{2 \times (-1) + 1 \times 2}{2 + 1}, \frac{2 \times 1 + 1 \times (-5)}{2 + 1}\right)$ $\therefore (0, -1)$

8. 다음은 세 점 $\mathbf{A}(x_1,y_1), \mathbf{B}(x_2,y_2), \mathbf{C}(x_3,y_3)$ 를 꼭짓점으로 하는 $\Delta\mathbf{ABC}$ 의 무게중심 G의 좌표가 $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$ 임을 보인 것 이다. () 안에 알맞은 것을 순서대로 쓴 것은?

선분 BC의 중점을 M(x',y')이라 하면, $x' = (\bigcirc), \ y' = \frac{y_2 + y_3}{2}$ 무게 중심 G(x,y)는 선분 AM을 (\bigcirc) 로 내분하는 점이므로 $x = \frac{2 \times x' + 1 \times x_1}{2 + 1} = \frac{x_2 + x_3 + x_1}{3}$ 같은 방법으로 $y = \frac{y_2 + y_3 + y_1}{3}$ \therefore $G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

① $x_2 + x_3$, 2:1 ② $x_2 + x_3$, 3:1 ③ $\frac{x_2 + x_3}{2}$, 1:1 ④ $\frac{x_2 + x_3}{2}$, 3:1

 $\overline{\mathrm{BC}}$ 의 중점 $\mathrm{M}(x',y')$ 은 $\left(\frac{x_2+x_3}{2}, \frac{y_2+y_3}{2}\right)$ 이므로 $x' = \frac{x_2 + x_3}{2}, y' = \frac{y_2 + y_3}{2}$ 무게중심 G(x,y)는 선분 $\overline{\mathrm{AM}}$ 을 2 : 1로 내분하는 점이므로 $x = \frac{2 \times x' + 1 \times x_1}{2 + 1}$ $= \frac{x_1 + x_2 + x_3}{3}$ $y = \frac{y_1 + y_2 + y_3}{3}$

- 9. 네 점 O(0,0), A(-3,0), B(4,0), C(2,5) 에 대하여 삼각형 AOC의 넓이는 삼각형 BOC의 넓이의 몇 배인가?
 - ① $\frac{3}{7}$ ② $\frac{4}{7}$ ③ $\frac{3}{4}$ ④ $\frac{4}{3}$ ⑤ $\frac{5}{2}$

 ΔAOC 와 ΔBOC 의 높이가 같으므로 ΔAOC 와 ΔBOC 의 넓이의 비는 두 삼각형의 밑변의 비와 같다.

 $\overline{AO}:\overline{BO}=3:4$ 이므로 $\triangle AOC$ 의 넓이는 $\triangle BOC$ 의 넓이의 $\frac{3}{4}$

배이다.