1. 두 점 A(-3,-2), B(1,1) 로부터 같은 거리에 있는 점 P의 자취의 방정식을 구하면?

2x + y + 3 = 0

4x + 6y + 7 = 0

① x + 2y + 3 = 0

3 4x - 6y + 15 = 0

① y = x + 1② v = x - 1

지나는 직선의 방정식은?

③ y = -x + 1y = -x - 1(5) y = x

두 점 A(-2, -3), B(2, 1) 을 지나는 직선에 평행하고, 점 (2, 1) 을

- **3.** 직선 x+2y+3=0 과 수직이고 점 (2, 0) 을 지나는 직선의 방정식을 구하면?
 - ① 2x y 4 = 0 ② x 2y 4 = 0

(3) 2x - 3y - 4 = 0 (4) 3x - y - 4 = 0

3x - 3y - 4 = 0 3x - y - 4 = 0

점 A(-2,1), B(4,4) 를 이은 선분 AB 를 2:1 로 내분하는 점을 지나 AB 에 수직인 직선의 방정식을 l 이라고 할 때, 점 (1,0) 에서 직선l 에 이르는 거리는?

5. 두 직선 2x-y-3=0, x+y-3=0의 교점을 지나고 (0,0)을 지나는 직선의 방정식을 ax+by=0이라 할 때, a-b의 값을 구하여라.

▶ 답:

① 1 ② $\sqrt{2}$ ③ $\sqrt{3}$ ④ 2 ⑤ $\sqrt{5}$

6. 두 점 (2,-1) , (4,3) 을 지나는 직선과 원점 사이의 거리는 ?

7. 서로 수직인 두 직선
$$y = -\frac{1}{2}x + 2$$
 와 $y = 2x$ 의 교점을 H 라 할 때, H 의 좌표는 ()이다. 따라서, 원점에서 직선 $y = -\frac{1}{2}x + 2$ 까지의 거리는 ()이다. 위의 ()안에 알맞은 것을 차례대로 나열하면?

①
$$\left(\frac{2}{5}, \frac{4}{5}\right), \frac{2\sqrt{5}}{5}$$
 ② $\left(\frac{2}{5}, \frac{4}{5}\right), \frac{4\sqrt{5}}{5}$ ③ $\left(\frac{4}{5}, \frac{8}{5}\right), \frac{3\sqrt{5}}{5}$ ④ $\left(\frac{4}{5}, \frac{8}{5}\right), \frac{4\sqrt{5}}{5}$

 $(1,2), \sqrt{5}$

점 P(1,2) 에서 직선 2x + y - 3 = 0 에 내린 수선의 발을 H 라할 때, 수선 PH 의 길이는?

① $\frac{\sqrt{5}}{5}$ ② $\frac{\sqrt{3}}{3}$ ③ $4\sqrt{2}$ ④ 2 ⑤ 3

- x축 위의 점 P로부터 직선 4x + 3y + 2 = 0까지의 거리가 2인 점은 두 개 있다. 이 때. 이 두 점 사이의 거리를 구하여라.
- ▶ 답:

10. 포물선 $y = x^2 - x + 1$ 위의 점 중에서 직선 y = x - 3 에의 거리가 최소인 점을 (a, b) 라 할 때, a + b 의 값을 구하면? (2) 2 3**(4)** 4

원점에서 직선 ax + by + 4 = 0 까지의 거리가 $\sqrt{2}$ 일 때 $a^2 + b^2$ 의 값을 구하면? $3\sqrt{2}$ (5) $2\sqrt{3}$

12. x 축의 양의 방향과 이루는 각의 크기가 45° 이고, 점 (-1, 2) 를 지나는 직선이 점 (a, 7) 를 지날 때, 상수 a 의 값은? (2) -2(4) 2

$$3 \frac{1}{1} + \frac{2}{1} = 1$$

$$3 \frac{1}{a} + \frac{2}{b} = 1$$

①
$$a + \frac{a}{2} = 1$$
 ② $\frac{2}{a} + \frac{1}{b} = 1$ ③ $\frac{1}{a} + \frac{2}{b} = 1$ ④ $\frac{2}{a} + b = 1$

14. 직선 x+ay-1=0 과 x 축, y 축의 양의 부분으로 둘러싸인 삼각형의 넓이가 $\frac{1}{4}$ 일 때, a 의 값을 구하여라. (단, a>0)

) 답: a =

점 (2,4) 를 지나며 기울기가 음인 직선과 x 축 및 y 축으로 둘러싸인 삼각형의 넓이가 16 이다. 이 직선의 x 절편을 a, y 절편을 b 라 할 때, a+b 의값은? (2) 14 ③ 16 (4) 18 (5) 20

16. 좌표평면 위에 서로 다른 세 점 A(-2k-1,5) B(k,-k-10), C(2k+5,k-1)가 일직선 위에 있을 때, k의 값의 곱을 구하면?

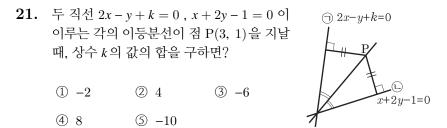
▶ 답:

17. 직선 ax + by + c = 0에 대하여 ab < 0, bc > 0일 때, 이 직선이 지나지 않는 사분면을 구하여라.

▶ 답: 제 사분면

18. 다음은 점 A(3,3) 에서 직선 l: x+2y=4 까지의 거리를 구하는 과정이다.

점
$$A(3,3)$$
 에서 직선 l 에 내린 수선의 발을 $H(x_1,y_1)$ 이라 하면 $x_1+2y_1=4$ ···① 직선 AH 의 기울기는 (③) 이므로 $\frac{y_1-3}{x_1-3}=(②)$ 즉, $y_1-3=(③)(x_1-3)$ ···② 따라서 $\overline{AH}=\sqrt{(x_1-3)^2+(y_1-3)^2}=(④)|x_1-3|$ ①,②에서 $x_1-3=(⑥)$ 이므로 $\overline{AH}=\sqrt{5}$ 의 ②, ④, ⑤에 알맞은 수를 순서대로 적으면?


① $\frac{1}{2}$, $\sqrt{5}$, 1 ② $\frac{1}{2}$, $\sqrt{5}$, -1 ③ 2, $\sqrt{5}$, 1 ④ 2, $2\sqrt{5}$, -1

세 직선 x + 2y - 2 = 0, 3x - y - 6 = 0, 2x - 3y + 3 = 0에 의해서 만들어지는 삼각형의 넓이는?

① $\frac{5}{2}$ ② 3 ③ $\frac{7}{2}$ ④ 4 ⑤ $\frac{9}{2}$

20.	두 직선 $2x - y - 1 = 0$, $x + 2y - 1 = 0$ 으로부터 같은 거리에 있는 점
	P의 자취의 방정식 중에서 기울기가 양수인 것은?

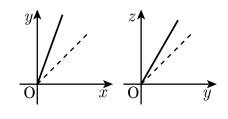
y = x ② $y = \frac{1}{2}x$ ③ $y = \frac{1}{3}x$ ④ $y = \frac{1}{4}x$

22. 점 Q가 직선 2x+y-4=0 위를 움직일 때, 점 A(-2,3)과 Q를 잇는 선분 AQ의 중점 P의 자취의 방정식은?

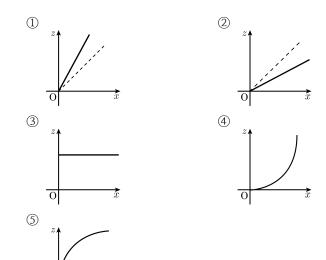
② 2x + 3y + 1 = 0

(4) x - 4y - 3 = 0

① 4x + 2y - 3 = 0


3 4x - 3y + 1 = 0

(5) -x + y + 2 = 0


23. 함수
$$y = x^2$$
 의 그래프 위의 두 점 $P(a, b)$, $Q(c, d)$ 에 대하여 $\frac{\sqrt{b} + \sqrt{d}}{2} = 1$ 일 때, 직선 PQ의 기울기는?(단, $0 < a < c$)

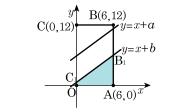
① $\frac{5}{2}$ ② 2 ③ $\frac{3}{2}$ ④ 1 ⑤ $\frac{1}{2}$

24. 세 변수 *x*, *y*, *z* 에 대하여 아래의 두 그래프(실선)는 각각 *x* 와 *y*, *y* 와 *z* 사이의 관계를 나타낸 것이다.

이때, x 와 z 사이의 관계를 그래프로 나타내면? (단, 점선은 원점을 지나고 기울기가 1 인 직선이다.)

0

D(7) $\stackrel{y}{\longleftarrow}$ $\stackrel{l}{\longleftarrow}$ E


26.

$$\begin{array}{c|c}
 & E \\
 & A(4) \\
\hline
 & O \\
\hline
 & C(5) F(6)^{x}
\end{array}$$

아래 그림에서 직선 l이 두 직사각형 \square OABC와 \square ODEF의 넓이를 동시에 이등분할 때, 직선 l: y = ax + b 이다. a + b의 값을 구하면?

$$\bigcirc -\frac{5}{2} \qquad \bigcirc -\frac{3}{2} \qquad \bigcirc -\frac{1}{2} \qquad \bigcirc \boxed{1}$$

27. 네 점 O(0,0), A(6,0), B(6,12), C(0,12)를 꼭지점으로 하는 사각형 OABC가 있다. 그림과 같이 두 직선 y = x + a, y = x + b가 사각형 OABC의 넓이를 삼등분할 때, ab의 값은?

4)

9 7

8

28. 세 점 A (4, 2) , B (0, -2), C (4, 0)을 꼭지점으로 하는 삼각형 ABC가 있다. 직선 x = k가 삼각형 ABC의 넓이를 이등분할 때, k의 x은?

① $\frac{3\sqrt{2}}{2}$ ② $\frac{3\sqrt{3}}{2}$ ③ $2\sqrt{2}$ ④ 3 ⑤ $\sqrt{10}$

29. 세 직선
$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases}$$
 이 삼각형을 만들지 못할 때, 모든 상수 a $ax + y = 0$

①
$$a = 2 \, \text{또는} \, a = \frac{1}{2} \, \text{또는} \, a = -\frac{2}{3}$$

② $a = 2 \, \text{또는} \, a = -\frac{1}{2} \, \text{또는} \, a = -\frac{2}{3}$

①
$$a = 2 \, \Xi \stackrel{}{}_{\stackrel{}{}_{\sim}} a = \frac{1}{2} \, \Xi \stackrel{}{}_{\stackrel{}{\sim}} a = -\frac{2}{3}$$

② $a = 2 \, \Xi \stackrel{}{}_{\stackrel{}{\sim}} a = -\frac{1}{2} \, \Xi \stackrel{}{}_{\stackrel{}{\sim}} a = -\frac{2}{3}$

②
$$a = 2 \, \text{\mathbb{E}} \perp a = -\frac{1}{2} \, \text{\mathbb{E}} \perp a = -\frac{2}{3}$$

③ $a = 2 \, \text{\mathbb{E}} \perp a = \frac{1}{2} \, \text{\mathbb{E}} \perp a = \frac{2}{3}$

③
$$a = 2 \, \text{£} \, = -\frac{1}{2} \, \text{£} \, = -\frac{3}{3}$$
③ $a = 2 \, \text{£} \, = \frac{1}{2} \, \text{£} \, = \frac{2}{3}$

a = -2 또는 $a = \frac{1}{2}$ 또는 $a = \frac{2}{3}$

세 직선 2x+y+1=0, x-y+2=0, ax-y=0 이 삼각형을 만들지 못할 때, 상수 a 의 값을 구하면? (단, a > 0)

(3) 3

(4) 4

31. 세 점 A(1, 3), B(3, 1), C(5, 5) 를 꼭지점으로 하는 △ABC 와 직선 kx - v + 2k - 1 = 0 이 만난다. 상수 k 의 최대값을 M , 최소값을 m이라 할 때, $\frac{M}{m}$ 의 값은?

①
$$\frac{2}{3}$$
 ② $\frac{4}{3}$ ③ 2 ④ $\frac{8}{3}$ ⑤ $\frac{10}{3}$

32. 두 직선 $y = -\frac{1}{2}x + 2$ 와 y = kx + 2k + 1 이 제 1 사분면에서 만날 때, k 의 값의 범위는?

① $-\frac{1}{6} < k < \frac{1}{2}$ ② $-\frac{3}{2} < k < \frac{1}{2}$ ③ $-\frac{1}{6} < k < 2$

①
$$-\frac{1}{6} < k < \frac{1}{2}$$
 ② $-\frac{3}{2} < k < \frac{1}{2}$ ③ $-\frac{1}{6} < k < 2$ ④ $-\frac{1}{6} < k < 1$ ⑤ $-\frac{1}{2} < k < \frac{1}{2}$

점 (a,b)가 직선 y = 2x - 3위를 움직일 때, 직선 y = ax + 2b는 항상 일정한 점 P를 지난다. 이 때, 점 P의 좌표는? ① P(-4, 6) $^{(3)}$ P(2, 3) ② P(-4, -6)

⑤ P(-2, -4)

4 P(3, 2)

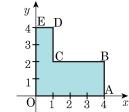
34.	직선 $(k-3)x + (k-1)y + 2 = 0$ 은 k 의 값에 관계없이 항상 일정한
	점을 지난다. 이 점과 직선 $x + 2y - 4 = 0$ 사이의 거리는?

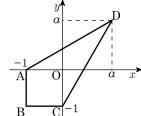
①
$$\frac{\sqrt{5}}{5}$$
 ② $\frac{2\sqrt{5}}{5}$ ③ $\frac{\sqrt{5}}{2}$ ④ $\sqrt{5}$ ⑤ $2\sqrt{5}$

 $b \ge a > 0$, $c \ge 0$ 이면 $\frac{a+c}{b+c} \ge \frac{a}{b}$ 가 성립한다. 다음 그림과 같이 좌표평면 위의 두 점 A(3, 0),

B(0, 3) 에 대하여 점 P(x, y) 가 선분 AB 위를

움직일 때, $\frac{5-y}{5+x} \times \frac{5-x}{5+y}$ 의 최솟값은?

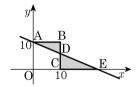



자의 끝이 각각 가로등의 밑 부분과 일치하였다. 가로등의 길이는 각각 $3 \, \text{m}$, $2 \, \text{m}$ 이고, 두 가로등 사이의 거리는 $8 \, \text{m}$ 일 때이 어린이의 키는 몇 m인가 구하면? (단, 두 가로등과 어린이는 일직선 위에 있다.) ③ 1.3 m (5) 1.1 m $(1) 1.5 \,\mathrm{m}$ (2) 1.4 m (4) 1.2 m

한 어린이가 길의 양쪽 모두에 가로등이 있는 길을 걷고 있던 중 그림

37. 아래 그림과 같이 점 O(0, 0), A(4, 0), B(4, 2) C(1, 2), D(1,4), E(0,4)를 꼭지점으로 하는 도형의넓이를 직선 y = ax 가 이등분할 때, a 의 값은?

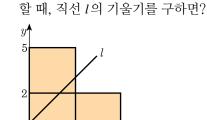
y ↑ E D



y축이 사각형 ABCD의 넓이를 이등분할 때, 양수 a의 값은?

$\mathbf{B} \mathbf{C} = \mathbf{C}$
y축이 사각형 ABCD의
$-1 + \sqrt{5}$

①
$$\frac{-1+\sqrt{5}}{2}$$
 ② $\frac{\sqrt{5}}{2}$ ③ $\frac{1+\sqrt{5}}{2}$



$$\begin{array}{c|cccc}
\hline
0 & 10 & E \\
\hline
 & & & & \\
\hline
 & & & \\
\hline
 & & & & \\
\hline
 &$$

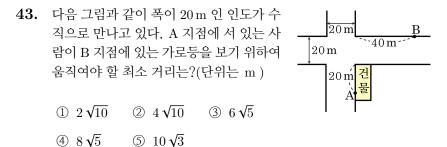
$$\bigcirc -\frac{1}{2}$$
 $\bigcirc -\frac{1}{3}$ $\bigcirc -\frac{1}{4}$ $\bigcirc -\frac{1}{5}$ $\bigcirc \bigcirc$

다음 그림과 같이 정사각형 OABC가 있다. 변 BC 위에 점 B, C가

O 3 6 \bar{x}

다음 그림에서 색칠한 부분의 넓이를 원점을 지나는 직선 1이 이동분

원점을 지나고 그림과 같은 도형 OABCDE의 넓이를 이등분하는 41. 직선의 방정식은? (단, 도형의 각 변은 x축, 또는 y축과 평행하다.)


$$\begin{array}{c|c}
y \\
\hline
9 \\
\hline
6 \\
\hline
--- \\
\hline
0 \\
4 \\
7
\end{array}$$

②
$$y = \frac{27}{10}x$$
 ③ $y = \frac{6}{5}x$

42. y = |x - 2| + 1, y = mx에 대해 두 식을 동시에 만족하는 (x, y)가 존재하지 않을 때, m의 값의 범위는?

① $-1 < m < \frac{1}{2}$		$3 - \frac{1}{2} < m < 1$
1	1	

 $4 - \frac{1}{2} \le m < 1$ $5 - \frac{1}{2} \le m < 0$

좌표평면 위에서 원점과 직선 x - y + 2 + k(x + y) = 0 사이의 거리를 d(k) 라 할 때, d(k) 의 최댓값은?

① $\frac{\sqrt{2}}{2}$ ② $\sqrt{2}$ ③ $\sqrt{3}$ ④ $2\sqrt{2}$ ⑤ $2\sqrt{3}$

45. 세 직선 y = 2x + 1, 2y = x + 2, x + y = 4 로 둘러싸인 삼각형의 넓이는?

① $\frac{2}{3}$ ② $\frac{3}{3}$ ③ 2 ④ 3 ⑤ 4

좌표평면 위의 점 (x, y) 로 나타낼 때, 이 점들을 꼭지점으로 하는 사각형의 넓이는? (4) $3\sqrt{2}$

46. x, y 에 대한 방정식 xy + x + y - 1 = 0 을 만족시키는 정수 x, y 를

(3) 8

직선 $y = m_1 x$ 의 기울기 m_1 은 0이 아닌 유리수이다. 이 직선이 x축의 양의 방향과 이루는 각을 이등분한 직선을 $y = m_2 x$ 라 한다. m_2 가 유리수일 때, 다음 중 m_1 의 값이 될 수 있는 것은?

① $\frac{3}{5}$ ② $\frac{5}{3}$ ③ $\frac{7}{5}$ ④ $\frac{5}{7}$ ⑤ $\frac{5}{12}$