1. 수직선 위의 점 A (−2), B (−1), C (5)가 있을 때, 두 점 사이의 거리 AB, BC를 구하면?

② $\overline{AB} = 1$, $\overline{BC} = 5$

① $\overline{AB} = 2$, $\overline{BC} = 5$

- **2.** 두 점 A(3,-1), B(a,-3)에 대하여 $\overline{AB}=2$ 일 때, a의 값을 구하면?
 - ① 1 ② 2 ③33 ④ 4 ⑤ 5

$$\overline{AB}^{2} = (a-3)^{3} + (-3+1)^{2} = 4$$

$$a^{2} - 6a + 9 = 0$$

$$(a-3)^{2} = 0$$

$$\therefore a = 3$$

3. 두 점 A (-3,2), B (4,5) 에서 같은 거리에 있는 *x* 축 위의 점 P 의 좌표를 구하면?

(2, 0)

(2) (1, 0)

(0, 0)

해설
$$P(x,0)$$
이라 놓으면 두 점 사이의 거리의 공식에 의하여
$$\sqrt{(x+3)^2+(2-0)^2}=\sqrt{(x-4)^2+(5-0)^2}\Rightarrow 14x=28\Rightarrow x=2$$
 ∴ P(2,0)

4. 두 점 A(-5,-1), B(4,-5)에서 같은 거리에 있는
$$y=-x$$
 위에 있는
점의 좌표는?

①
$$\left(\frac{15}{26}, \frac{15}{26}\right)$$
 ② $\left(\frac{13}{26}, -\frac{13}{26}\right)$ ③ $\left(\frac{13}{26}, -\frac{15}{26}\right)$ ④ $\left(\frac{15}{26}, -\frac{13}{26}\right)$

구하는 점을 P(a, -a) 라 하면. (: v = -x)

$$(a+5)^{2} + (-a+1)^{2} = (a-4)^{2} + (-a+5)^{2}$$

$$a^{2} + 10a + 25 + a^{2} - 2a + 1$$

$$= a^{2} - 8a + 16 + a^{2} - 10a + 25$$

$$\Rightarrow 26a = 15 \Rightarrow a = \frac{15}{26}$$

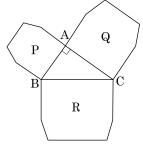
$$\therefore P(a, -a) = \left(\frac{15}{26}, -\frac{15}{26}\right)$$

 $\overline{PA} = \overline{PB} \Rightarrow \overline{PA}^2 = \overline{PB}^2$

라고 할 때, 다음 중 항상 성립하는 것은? B

다음 그림과 같이, 직각삼각형 ABC의 각 변을 한 변으로 하는 닮은 도형 P,Q,R가

있다. 도형 P,Q,R의 넓이를 각각 x, y, z



①
$$xy = z$$

5.

$$3 x^2 + y^2 = z^2$$

해설
도형 P,Q,R가 닮은 도형들이고 그들의 닮음비가
$$\overline{AB}$$
: \overline{AC} : \overline{BC} 이므로 도형 P,Q,R의 넓이의 비는 닮음비의 제곱인 \overline{AB}^2 : \overline{AC}^2 : \overline{BC}^2 이 된다. 그런데 $\triangle ABC$ 는 직각삼각형이므로 $\overline{AB}^2 + \overline{AC}^2 = \overline{BC}^2$
따라서, 도형 P,Q,R의 넓이를 각각 x , y , z 라 하면 $x+y=z$

6. 다음은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC에서 $\overline{AB}^2 + \overline{AC}^2 = \overline{BC}^2$ 을 증명한 것이다. 다음 그림과 같이 변 BC의 중점을 M이라 하면 $\overline{AB}^2 + \overline{AC}^2 = \boxed{\cancel{OH}} \left(\overline{BM}^2 + \boxed{\cancel{UH}}^2\right)$ 이 때, $\overline{BM} = \frac{1}{2}\overline{BC}$ 이고, $\boxed{\cancel{UH}} = \boxed{\cancel{UH}}\overline{BC}$ 이므로 $\overline{AB}^2 + \overline{AC}^2 = \boxed{\cancel{OH}} \left(\boxed{\cancel{UH}}\overline{BC}^2\right) = \overline{BC}^2$

의의 증명에서 (개, (대, 대)에 알맞은 것을 순서대로 적은 것은?

①
$$3, 2\overline{AM}, \frac{1}{2}, \frac{1}{3}$$
 ② $4, 2\overline{AM}, \frac{1}{2}, \frac{1}{4}$ ③ $2, \overline{AM}, \frac{1}{2}, \frac{1}{2}$ ④ $2, \overline{AM}, \frac{1}{4}, \frac{1}{2}$ ⑤ $\frac{16}{5}, \overline{AM}, \frac{1}{4}, \frac{5}{16}$

해설 파푸스의 중선정리에 의해
$$\overline{AB}^2 + \overline{AC}^2 = \boxed{2} \left(\overline{BM}^2 + \overline{AM}^2 \right)$$
 이 때, $\triangle ABC$ 는 $\angle A = 90\,^{\circ}$ 인 직각삼 각형이므로 점 A는 점 M을 중심으로 하고, 변 BC를 지름으로 하는 원 위의 점이다.
$$\overline{AM} = \overline{BM} = \overline{CM} \text{ 이므로} \boxed{\overline{AM}} = \frac{1}{2}$$

$$\overline{AB}^2 + \overline{AC}^2 = 2 \left(\overline{\frac{BC}{4}} + \overline{\frac{BC}{4}} \right)$$

$$= \boxed{2} \left(\overline{\frac{1}{2}} \overline{BC}^2 \right) = \overline{BC}^2$$