$$\bigcirc -y = 2(x+y) + 1$$

$$y = \frac{x}{5} - 6$$

①
$$y = 2x^2 - 2x$$
: 이차함수
② $y = \frac{1}{x} + 3$: 분수함수

⑤
$$y = -\frac{1}{2}$$
 : 상수함수

2. 일차함수 y = f(x)에서 y = 5x - 3일 때, f(-1) + f(1)의 값은?

$$f(-1) = -5 - 3 = -8$$

$$f(1) = 5 - 3 = 2$$

$$\therefore f(-1) + f(1) = -6$$

3. 일차함수 y = -2x + b의 x의 범위가 $1 \le x \le a$, 함숫값의 범위가 $-1 \le y \le 3$ 일 때, a + b의 값은?

①8 ② 10 ③ 12 ④ 14 ⑤ 16

해설
$$x$$
의 값이 커질수록 y 의 값이 작아지므로 x 의 범위의 최솟값 1 을 대입했을 때 함숫값의 범위의 최댓값 3 이 되므로 $b=5$ x 에 a 를 대입했을 때 y 는 -1 이 되므로 $a=3$ 이다. 그러므로 $a+b=8$

일차함수 $y = -\frac{1}{3}x$ 의 그래프에 대한 보기의 설명 중 옳은 것을 모두고른 것은?

모기

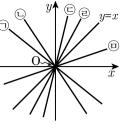
- ⊙ 원점을 지난다.
 - \bigcirc 점 $\left(-1, \frac{1}{3}\right)$ 을 지난다.
- © 제 1 사분면과 제 3 사분면을 지난다.
- ② x 의 값이 감소하면 y 값은 감소한다.
- ⓐ $y = -\frac{1}{5}x$ 의 그래프가 $y = -\frac{1}{3}x$ 의 그래프보다 y축에서 멀리 있다.
- ① ①, 心

- \bigcirc \bigcirc , \bigcirc , \bigcirc
- 3 7, 0

(4) (L), (E)

- **③**⑦, □, 回
- 애실
- $\mathbb{C}\left(-1, \frac{1}{3}\right)$ 을 함숫값에 대입하면 성립한다.
- ⓐ $y = -\frac{1}{5}x$ 의 기울기의 절댓값이 $y = -\frac{1}{3}x$ 보다 작으므로 y 축에서 멀리 있다.

5. 일차함수 y = 2x - a 과 y = -bx + 3 가 점 (2, 1) 을 지날 때, $y = \frac{b}{a}x$ 의 그래프를 갖으시오.



▶ 답:

▷ 정답: □

일차함수 y = 2x - a 과 y = -bx + 3 가 점 (2, 1) 를 지나므로

x = 2, y = 1 을 대입하면 $1 = 2 \times 2 - a$, $1 = -b \times 2 + 3$

즉, a = 3, b = 1 이다.

따라서 $\frac{b}{a} = \frac{1}{3}$ 이므로 기울기가 1 보다 작으면서 오른쪽 위를

향한 그래프를 찾는다.

6. 점 $\left(\frac{1}{3}, \frac{2}{3}\right)$ 를 지나는 일차함수 $y = ax - \frac{2}{3}$ 의 그래프를 y축 방향으로 2만큼 평행이동하였더니 점 $\left(\frac{1}{2}m, m\right)$ 을 지난다. 이때, m의 값은?

에설
일차함수
$$y = ax - \frac{2}{3}$$
의 그래프가 점 $\left(\frac{1}{3}, \frac{2}{3}\right)$ 를 지나므로 $\frac{2}{3} = a \times \frac{1}{3} - \frac{2}{3}$, $a = 4$ 이다.
따라서 주어진 함수는 $y = 4x - \frac{2}{3}$ 이고 y 축 방향으로 2만큼
평행이동하면 $y = 4x + \frac{4}{3}$ 이고, 이 그래프 위에 점 $\left(\frac{1}{3}m, m\right)$ 이
있으므로
 $m = \frac{4}{3}m + \frac{4}{3}$ 가 성립한다.

다음 일차함수의 그래프 중 x 절편이 다른 하나는?
 ① y = x - 2
 ② y = -x - 2
 ③ y = -x + 2

①
$$y = \frac{1}{2}x - 1$$
 ③ $y = 2x - 4$

각각의 x절편을 구하기 위해 y = 0을 대입해 보면, ① x = 2

②
$$x = -2$$
 ③ $x = 2$

④ x = 2 ⑤ x = 2이다.

= 2이다. 이 권료

따라서 x절편이 다른 것은 y = -x - 2이다.

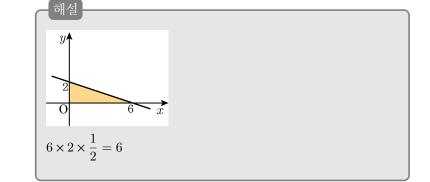
- 8. 일차함수 ax + y + b = 0 의 그래프의 x 절편이 2이고, y 절편이 -4일 때, a + b 의 값은?
 - $\bigcirc 1 6 \qquad \bigcirc 2 2 \qquad \bigcirc 3 \bigcirc 2 \qquad \bigcirc 4 \ 6 \qquad \bigcirc 5 \ 8$

$$ax + y + b = 0$$
, $y = -ax - b$
 y 절편이 -4 이므로 $-b = -4$, $b = 4$
 $y = -ax - 4$ 에 $(2,0)$ 대입
 $0 = -2a - 4$, $a = -2$

a+b=-2+4=2

. 일차함수 $y = -\frac{1}{3}x + 2$ 의 그래프와 x 축, y 축으로 둘러싸인 삼각형의 넓이는?

① 2 ② 4 ③ 6 ④ 10 ⑤ 12



10. 다음 중 일차함수 y = ax + b = y축 방향으로 -k만큼 평행 이동한 그래프에 대한 설명으로 옳은 것의 개수는?

보기

 $\neg . y = ax$ 의 그래프와 기울기는 같다.

L. 이 일차함수는 y = ax + b + k로 나타낼 수 있다.

C. 이 일차함수의 x절편은 알 수 없다. 리. 이 일차함수의 y절편은 b-k이다.

 \Box . 점 (1, a+b-k)를 지난다.

ㄴ. 이 일차함수는 y = ax + b - k로 나타낼 수 있다.

 \Box . 이 일차함수의 x 절편은 $-\frac{b-k}{a}$ 이다.

11. 상수 a, b, c 에 대하여 ab < 0, bc > 0 일 때, 일차함수 ax + by + c = 0 의 그래프가 지나지 않는 사분면을 말하여라.

해설
$$ab < 0, bc > 0 에서 b \neq 0, c \neq 0 이다.$$

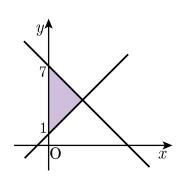
$$ax + by + c = 0$$

$$by = -ax - c$$

$$y = -\frac{a}{b}x - \frac{c}{b}$$

$$ab < 0, bc > 0 에서 b \neq 0, c \neq 0 이므로 \frac{a}{b} < 0, \frac{c}{b} > 0 이다.$$
 따라서 $y = -\frac{a}{b}x - \frac{c}{b}$ 의 그래프는 (기울기) > 0 이고 (y절편) < 0 인 일차함수이므로 제 2 사분면을 제외한 제 1, 3, 4 사분면을 지난다.

12. 다음 그림과 같이 y축과 두 직선 y = x + 1, y = -x + 7로 둘러싸인 삼각형의 넓이를 구하여라.



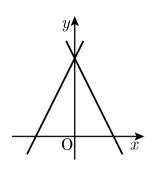
4 8

$$y = x + 1$$
과 $y = -x + 7$ 의 교점의 좌표를 구하면 $x + 1 = -x + 7$

$$2x = 6$$
, $x = 3$, $y = 4$
교점의 좌표는 $(3, 4)$

(넓이) =
$$\frac{1}{2} \times (7-1) \times 3 = 9$$

13. 다음은 두 함수 y = 2x + 4, y = -2x + 4 의 그래프를 그림으로 나타낸 것이다. 다음 중 옳은 것은?

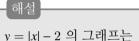


- \bigcirc 두 그래프가 만나는 점의 x 좌표는 4 이다.
- \bigcirc 두 그래프의 x 절편 값의 합은 4 이다.
- ⓒ y = 2x + 4 그래프를 y 축 방향으로 평행이동하면 y = -2x + 4 의 그래프와 x 축 위에서 만난다.
- ② 두 그래프는 모두 점 (0, 4) 를 지난다.

해설

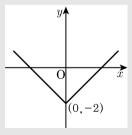
○ 두 그래프가 만나는 점의 y 좌표는 4 이다.○ 두 그래프의 x 절편 값은 각각 -2, 2 이므로 합은 0 이다.

14. 두 직선 y = |x| - 2 와 y = -a 가 만나지 않을 때, a 값의 범위를 구하여라



1)
$$x \ge 0$$
 일 때, $y = x - 2$

$$(x < 0)$$
 일 때, $(y = -x - 2)$ 이므로 다음 그림과 같다.



따라서 y = -a 가 y = |x| - 2 의 그래프와 만나지 않는다면, -a < -2 이므로 a > 2 이다.

15. 일차함수 f(x) = ax + b 의 그래프가 다음 조건을 만족할 때, a + b 의 값을 구하여라.

① y = mx + 3 의 그래프와 y 축 위에서 만난다.

▷ 정답: 6

①에서 $\frac{(y)$ 값의 변화량)}{(x의 값의 변화량)} 이므로 기울기가 3 이고 ⓒ에서 y = mx + 3의 그래프와 y축 위에서 만나므로 y 절편이 같다. 따라서 기울기가 3, y 절편이 3 인 일차함수 이므로 f(x) = ax + b는 f(x) = 3x + 3 이다. 따라서 a + b = 6 이다.

16. 일차함수 y = f(x) 에서 x 의 값의 증가량에 대한 y 의 값의 증가량의 비가 $\frac{1}{2}$ 이고, f(2) = -2 일 때, f(k) = -5를 만족하는 상수 k 의 값은?

(1) -1

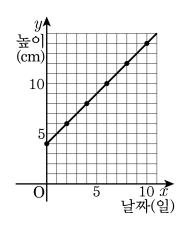
$$x$$
 의 값의 증가량에 대한 y 의 값의 증가량의 비는 기울기이므로 기울기는 $\frac{1}{2}$, $y=ax+b$ 에서 $y=\frac{1}{2}x+b$ 이다. 점 $(2,-2)$ 를 지나므로 $(2,-2)$ 를 대입해 보면 $-2=1+b,b=-3$ 이다. 따라서 일차함수의 식은 $y=\frac{1}{2}x-3$ 이다. 점 $(k,-5)$ 를 지나므로 대입해 보면 $-5=\frac{1}{2}k-3,\,\frac{1}{2}k=-2,\,k=-4$ 이다.

17. 다음 중 *x* 절편, *y* 절편이 모두 -6 인 그래프 위에 있는 점이 <u>아닌</u> 것은?

 \bigcirc (-1, -7) \bigcirc (0, -6) \bigcirc (1, -5)

$$x$$
 절편, y 절편이 모두 -6 인 그래프는 $(-6, 0)$, $(0, -6)$ 을 지나므로 이 직선의 그래프를 $y = ax + b$ 라고 할 때, $b = -6$ 이다. $0 = a \times (-6) - 6$, $a = -1$ 이므로 이 그래프는 $y = -x - 6$ 이다.

18. 분꽃이 땅속줄기에서 4 cm 자랐을 때부터 관찰하여 이틀마다 변화한 높이를 나타낸 것이다. 분꽃이 계속 같은 속도로 자란다고 할 때, 28 일 후의 분꽃의 높이는?



① 18 cm ② 20 cm ③ 22 cm ④ 32 cm ⑤ 44 cm

해설

y 절편이 4 이고, 점 (2,6) 을 지난다. 날짜를 x일 , 자란 높이를 y cm라고 하면 y=ax+4 에 (2,6) 을 대입하면 6=2a+4 , a=1 y=x+4 에 x=28을 대입하면 y=28+4 , y=32 (cm) 19. A 지점을 출발하여 0.4(km/분)의 속도로 12km 떨어진 B지점까지 자전거를 타고 가는 사람이 있다. 출발하여 x분 후의 이 사람이 간거리를 ykm라고 할 때, x와 y의 관계식은?
 ① y = 12x(0 ≤ x ≤ 1)
 ② y = 4x(0 ≤ x ≤ 3)

(4) $y = 0.4x(0 \le x \le 30)$

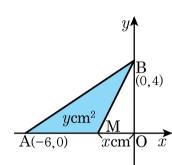
③
$$y = -4x(0 \le x \le 3)$$

⑤ $y = -0.4x(0 \le x \le 30)$

해설

0분부터 30분까지이다.

20. 다음 그림에서 점 M 이 점 O 를 출발하여 삼각형의 변을 따라 점 A 까지 움직인다. 점 M 이 점 O 로부터 움직인 거리를 xcm, \triangle ABM 의 넓이를 ycm 2 라고 할 때, x, y 사이의 관계식은?(단, x 의 범위를 반드시 포함)



①
$$y = 10 - x(0 \le x \le 5)$$
 ② $y = 12 - x(0 \le x \le 5)$

③
$$y = 10 - x(0 \le x \le 6)$$
 ④ $y = 10 - 2x(0 \le x \le 6)$

$$y = 12 - 2x(0 \le x \le 6)$$

$$(\triangle ABM 의 넓이)$$

$$= \frac{1}{2} \times (\overline{AM} 의 길이) \times (높이)$$

$$1 \times A \times (C_{\bullet,\bullet}) = 10$$

$$\Rightarrow y = \frac{1}{2} \times 4 \times (6 - x) = 12 - 2x(0 \le x \le 6)$$

$$\therefore y = 12 - 2x(0 \le x \le 6)$$

$$-2x(0 \le x \le 0)$$

① 80km ② 75km ③ 55km ④ 45km ⑤ 3km

해설
$$1 \text{km}$$
 를 달렸을 때 사용하는 휘발유의 양은 $\frac{4}{20} \text{L이고}$, 남은 휘발유의 양이 $y \text{L}$ 이므로 $y = 50 - \frac{1}{5} x$ $y = 35$ 이므로 $x = 75 \text{(km)}$

22. 다음 중 일차함수 y = -x + 4와 평행하고 y절편이 3인 그래프 위에 있는 점은?

일차함수
$$y = -x + 4$$
와 평행하고 y 절편이 3 인 그래프는 $y = -x + 3$ 이므로 $\bigcirc 0 = -3 + 3$

ⓒ 2 = -1 + 3 $\therefore (3, 0), (1, 2)$ 두 점이 y = -x + 3 위에 있다. **23.** 점 (-3, -6)을 지나는 y = ax + b의 그래프가 제 1 사분면을 지나지 않도록 하는 음의 정수 a 의 최댓값을 구하여라.

점
$$(-3, -6)$$
을 $y = ax + b$ 에 대입하면

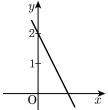
-6 = -3a + b ∴ b = 3a - 6 제 1 사분면을 지나지 않기 위해서는 기울기는 음수이고, y 절편은 음수이어야 하므로 a < 0, 3a - 6 < 0 → a < 0, a < 2이다. 따라서 음의 정수 a의 최댓값은 -1이다. **24.** 두 일차방정식 4x - 2y + 5 = 0, ax + y - 3 = 0의 그래프가 평행할 때, 상수 a의 값은?

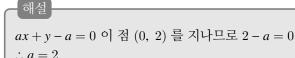
①
$$-3$$
 ② -2 ③ -1 ④ 0 ⑤ 1

해설
$$y = 2x + \frac{5}{2}, \ y = -ax + 3$$
이므로 $a = -2$

25. 일차방정식 ax + y - a = 0 의 그래프가 다음 그림과 같을 때. 상수 a 의 값은?

23 34 45 56





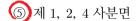
26. 좌표평면 위에 일차방정식 2x + y = 6 의 그래프를 그릴 때, 이 그래 프가 지나는 사분면을 모두 나타낸것은? (단, x, y 는 수 전체)

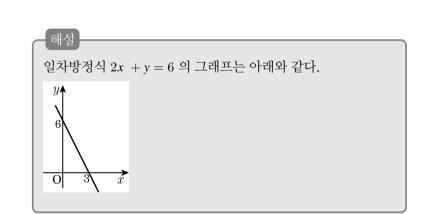
① 제 1 사분면

② 제 1, 3 사분면

③ 제 2, 3 사분면

④ 제 1. 3. 4 사분면





27. 직선 y=3 과 수직으로 만나고 (-1,5) 를 지나는 직선의 그래프가 (a-3)x+(2b+2)y-4=0 일 때, 상수 a,b 에 대하여 a-b 의 값을 구하여라.

 $\therefore a - b = 0$

해설
$$y=3$$
 과 수직으로 만나려면 주어진 일차방정식의 y 계수가 0 이 되어야 하고 $(-1, 5)$ 를 지나므로 $2b+2=0$ $\therefore b=-1$ $(a-3)(-1)-4=0$ $\therefore a=-1$

28. 연립방정식 $\begin{cases} 3x + y = 11 \\ ax + 2y = 18 \end{cases}$ 과 $\begin{cases} x - by = 8 \\ 4x - y = 3 \end{cases}$ 의 해를 그래프를

이용하여 풀었더니 교점의 좌표가 같았다. 이때 a, b 의 값을 각각 차례대로 구하여라.

- 답
- 답:
- ➢ 정답: a = 4
- ightharpoonup 정답: $b = -\frac{6}{5}$ 또는 -1.2

연립방정식 $\begin{cases} 3x + y = 11 \\ 4x - y = 3 \end{cases}$ 을 풀면 x = 2, y = 5 가 나온다.

x, y 값을 $\begin{cases} ax + 2y = 18 \\ x - by = 8 \end{cases}$ 에 각각 대입하면 $\begin{cases} 2a + 10 = 18 \\ 2 - 5b = 8 \end{cases}$ 이므로 $a = 4, b = -\frac{6}{5}$ 이다.

29. 다음의 세 직선이 한 점에서 만날 때, 상수 a의 값은? y = x + 2, 3x - 4y = 4, 2x - ay = 6

$$3x - 4y = 4 \cdots ②$$

① $\times 3 - ②$ 를 하면 $x = -12, y = -10$
점 $(-12, -10)$ 을 $2x - ay = 6$ 에 대입 $-24 + 10a = 6, a = 3$

 $x - y = -2 \cdots \bigcirc$

30. 다음 두 직선
$$\begin{cases} 2x - y = 4 \\ ax + 2y = 3 \end{cases}$$
 의 교점이 없을 때, a 의 값은?

$$3 -3$$

교점이 없을 때, 기울기가 같아야 한다.

$$\begin{cases} 2x - y = 4 \\ ax + 2y = 3 \end{cases} \Rightarrow \begin{cases} y = 2x - 4 \\ y = -\frac{a}{2}x + \frac{3}{2} \end{cases}$$

이때, x 의 계수가 기울기를 나타내므로

= -4

31. 직선 $y = ax + \frac{5}{2}$ 가 세 직선 y = -x + 3, y = 2x + 2, y = 0 으로

둘러싸인 삼각형의 둘레와 만나지 않도록 하는 a 의 범위의 최솟값과 최댓값을 구하여라.

- 답:

이다.

ightharpoonup 정답: 최솟값= $\frac{1}{2}$ \triangleright 정답: 최댓값= $\frac{5}{2}$

해설
좌표평면에
$$y = -x + 3 \cdots$$
 ① , $y = 2x + 2 \cdots$ 일 의 그래프를 나타내면
 $y = ax + \frac{5}{2}$ 가 $y = 0$ 과 ①, ② 에 의하여
만들어지는 삼각형 ABC 와
만나지 않으려면 $y = ax + \frac{5}{2}$ 의 그래프
가 어두운 부분의 범위가 된다.

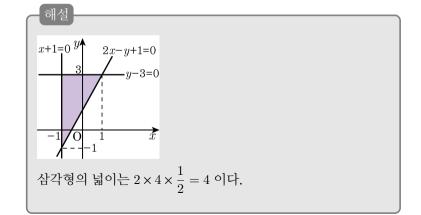
가 어두운 부분의 범위가 된다.
$$y=ax+\frac{5}{2} \text{ 에서 점A}\left(\frac{1}{3},\frac{8}{3}\right) \oplus \text{ 대입하면}$$

$$\frac{8}{3}=\frac{1}{3}a+\frac{5}{2} \therefore a=\frac{1}{2}$$
 또, B(-1,0) 을 대입하면 $a=\frac{5}{2}$ 따라서, $\frac{1}{2} \leq a \leq \frac{5}{2}$ 이므로 a 의 값의 최솟값은 $\frac{1}{2}$, 최댓값은 $\frac{5}{2}$ 이다.

32. 세 직선 2x-y+1=0, y-3=0, x+1=0 으로 둘러싸인 삼각형의 넓이를 구하여라.

▶ 답:

▷ 정답: 4



33. 일차함수 $y = \frac{3}{4}x + 3$ 의 그래프와 x 축, y 축으로 둘러싸인 부분의 넓이를 v = ax + a 의 그래프가 이등분할 때, a 의 값을 구하여라.

해설
$$y = \frac{3}{4}x + 3 \text{ 과 } x, y 축으로 둘러싸인 삼각형 넓이는 6, } y = ax + a$$
 의 x 절편은 $(-1, 0)$ 이므로 넓이를 이등분하기 위해서 교점의 y

값은 2이어야 한다.

값은 2이어야 한다.
$$2 = \frac{3}{4}x + 3$$
 이면 $x = -\frac{4}{3}$

 $\left(-1+\frac{4}{2}\right)=-6$ 이므로 a=-6 이다.