1.
$$\sqrt{(2-\sqrt{5})^2} + \sqrt{(2+\sqrt{5})^2}$$
 의 식을 간단히 하면?

① $\sqrt{5}$ ② 0 ③ $2\sqrt{5}$

 $\textcircled{4} \ 4 \qquad \qquad \textcircled{5} \ 2\sqrt{5} + 4$

 $\sqrt{5} > 2$ 이므로 $\sqrt{(2-\sqrt{5})^2} + \sqrt{(2+\sqrt{5})^2} = -2 + \sqrt{5} + 2 + \sqrt{5}$ $=2\sqrt{5}$

- **2.** x > 2 일 때, 다음 중 $\sqrt{(x-2)^2} \sqrt{(2-x)^2}$ 의 값은?
 - ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

x > 2 이므로 x - 2 > 0 , 2 - x < 0(준식) $= (x - 2) - \{-(2 - x)\}$ = (x - 2) - (x - 2) = 0

- 3. 다음 중 옳은 것을 고르면?
 - ① $\sqrt{5} + 1 < \sqrt{5}$ ③ $\sqrt{5} + 1 < \sqrt{5} + \sqrt{2}$
- ② $\sqrt{5} + 1 < \sqrt{5} + 1$ ④ $3 - \sqrt{10} < \sqrt{10} - 4$
- $3 \sqrt{10} < \sqrt{10} 5$
 - 710 5
- ③ $1 < \sqrt{2}$ 이므로 $\sqrt{5} + 1 < \sqrt{5} + \sqrt{2}$

다음 중 두 실수의 대소 관계가 옳지 <u>않은</u> 것은? **4.**

 \bigcirc $\sqrt{21} + 3 < \sqrt{19} - 4$

 \bigcirc $\sqrt{19} - \sqrt{5} > \sqrt{15} - \sqrt{7}$

© $\sqrt{15} + 3 > \sqrt{15} + 2$

④ ∟,□

⑤ ⑦,₾,⊜

2 (3 (),(

 \bigcirc $\sqrt{21} + 3 - (\sqrt{19} - 4) = \sqrt{21} - \sqrt{19} + 7 > 0$

해설

 $\therefore \sqrt{21} + 3 > \sqrt{19} - 4$

 $\therefore \sqrt{19} - \sqrt{5} > \sqrt{15} - \sqrt{7}$

- 다음 중 수의 형태를 \sqrt{x} 는 $a\sqrt{b}$ 의 꼴로, $a\sqrt{b}$ 는 \sqrt{x} 의 꼴로 바르게 **5**. 나타낸 것을 모두 고르면?
 - $\textcircled{4} \ 8\sqrt{2} = \sqrt{256}$ $\textcircled{5} \ 4\sqrt{3} = \sqrt{24}$
 - ① $\sqrt{50} = 5\sqrt{2}$ ② $\sqrt{98} = 6\sqrt{2}$
- $\boxed{3}3\sqrt{7} = \sqrt{63}$

① $\sqrt{50} = \sqrt{5^2 \times 2} = 5\sqrt{2}$

- ② $\sqrt{98} = \sqrt{7^2 \times 2} = 7\sqrt{2}$
- $3\sqrt{7} = \sqrt{3^2 \times 7} = \sqrt{63}$

다음 보기의 수를 $\sqrt{10a+b}$ 꼴로 나타냈을 때, a 가 같은 것을 모두 **6.** 고르면?

해설 ⑤ $\sqrt{45}$, ⓒ $\sqrt{40}$ 이므로 a가 모두 4로 같다. 따라서 ①, ⓒ이다.

7. $\sqrt{12} - 3\sqrt{48} - \sqrt{3} + \sqrt{27} = A\sqrt{3}$ 일 때, 유리수 A 의 값은?

① -5 ② -6 ③ -7 ④ -8 ⑤ -9

 $\sqrt{12} - 3\sqrt{48} - \sqrt{3} + \sqrt{27}$ $= 2\sqrt{3} - 12\sqrt{3} - \sqrt{3} + 3\sqrt{3}$

= −8 √3 따라서 A = −8 이다.

8.
$$\sqrt{96} + \frac{\sqrt{3}(\sqrt{2} - \sqrt{6})}{\sqrt{2}} - \frac{\sqrt{6} - 1}{\sqrt{2}} \div \frac{2\sqrt{2}}{\sqrt{3}} = \text{TTFO} \text{ ord}?$$

①
$$4\sqrt{6} - \frac{5}{4}\sqrt{3} - \frac{3}{4}\sqrt{2} - 3$$
 ② $4\sqrt{6} + \frac{5}{4}\sqrt{3} - \frac{3}{4}\sqrt{2} - 3$ ③ $4\sqrt{6} - \frac{5}{4}\sqrt{3} + \frac{3}{4}\sqrt{2} - 3$ ④ $4\sqrt{6} - \frac{5}{4}\sqrt{3} - \frac{3}{4}\sqrt{2} + 3$ ⑤ $4\sqrt{6} + \frac{5}{4}\sqrt{3} + \frac{3}{4}\sqrt{2} - 3$

$$(5) 4\sqrt{6} + \frac{5}{4}\sqrt{3} + \frac{3}{4}\sqrt{2} - 3$$

(준식) =
$$4\sqrt{6} + \sqrt{3} - 3 - \frac{3\sqrt{2} - \sqrt{3}}{4}$$

= $4\sqrt{6} + \frac{5}{4}\sqrt{3} - \frac{3}{4}\sqrt{2} - 3$

9. $\frac{4}{\sqrt{3}-2}$ 의 분모를 유리화하면?

①
$$4\sqrt{3} + 8$$

① $4\sqrt{3} + 8$ ② $-4\sqrt{3} + 8$ ③ $-4\sqrt{3} - 8$ ④ $-4\sqrt{3} + 2$ ⑤ $-4\sqrt{3} - 2$

 $\frac{4(\sqrt{3}+2)}{(\sqrt{3}-2)(\sqrt{3}+2)} = \frac{4\sqrt{3}+8}{-1} = -4\sqrt{3}-8$

10. 분수 $\frac{2\sqrt{3}}{2+\sqrt{3}}$ 을 유리화하면?

- ① $4\sqrt{3} + 6$ ② $-6 + 4\sqrt{3}$ ③ $-4\sqrt{3} 6$
- (4) $2\sqrt{7}$ (5) $-5\sqrt{7}+8$

 $\frac{2\sqrt{3}(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})} = 4\sqrt{3}-6$

- 11. 다음 그림과 같이 넓이가 각각 $2\,\mathrm{cm}^2$, $8\,\mathrm{cm}^2$, $18\,\mathrm{cm}^2$ 인 정사각형 모양의 타일을 이어 붙였다. 이 때, 이 타일로이루어진 도형의 둘레의 길이는?
 - 8cm² 18cm²
 - ① $12\sqrt{2} \text{ cm}$ ④ $17\sqrt{2} \text{ cm}$
- ② $13\sqrt{2}$ cm
- $3 15\sqrt{2} \,\mathrm{cm}$

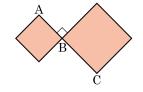
해설

 \bigcirc 18 $\sqrt{2}$ cm

넓이가 각각 $2\,\mathrm{cm}^2,~8\,\mathrm{cm}^2,~18\,\mathrm{cm}^2$ 이므로 한 변의 길이는

 $\sqrt{2}$ cm, $2\sqrt{2}$ cm, $3\sqrt{2}$ cm 이므로 이 타일로 이루어진 도형의 둘 레의 길이는 $(\sqrt{2}+2\sqrt{2}+3\sqrt{2})\times 4-(\sqrt{2}+2\sqrt{2})\times 2=18\sqrt{2}$ (cm) 이다.

- 12. 다음 그림에서 두 정사각형의 넓이가 각각 12, 27 일 때, \overline{AC} 의 길이를 구하면?
 - ① $3\sqrt{3}$ ② $4\sqrt{2}$ ③ $5\sqrt{3}$
 - $4 6\sqrt{2}$ $9\sqrt{3}$



작은 정사각형 한 변의 길이 $=\sqrt{12}=2\sqrt{3}$

큰 정사각형 한 변의 길이 = $\sqrt{27} = 3\sqrt{3}$ $\therefore \overline{AC} = \overline{AB} + \overline{BC} = 2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$ ① 1 ② 2 ③ 4 ④ 5 ⑤ 6

해설

150 - x 가 150보다 작은 제곱수 중에서 가장 커야 하므로 150 - x = 144
∴ x = 6

13. $\sqrt{150-x}$ 의 값이 가장 큰 자연수가 되도록 하는 자연수 x 의 값은?

14. 다음 중 $\sqrt{35-x}$ 가 자연수가 되게 하는 자연수 x 의 값은?

① 1 ② 3 ③ 5 ④ 7 ⑤

- ① √35-1 = √34 이고 34 는 제곱수가 아니므로 자연수가되지 않는다.
 ② √35-3 = √32 이고 32 는 제곱수가 아니므로 자연수가
- 되지 않는다. ③ $\sqrt{35-5}=\sqrt{30}$ 이고 30 은 제곱수가 아니므로 자연수가
- 되지 않는다. ④ $\sqrt{35-7} = \sqrt{28}$ 이고 28 는 제곱수가 아니므로 자연수가
- 되지 않는다. ⑤ $\sqrt{35-10}=\sqrt{25}$ 이고 $25=5^2$ 이므로 자연수 5 가 된다.

15. 다음 중 그 값이 가장 작은 것을 a, 절댓값이 가장 큰 것을 b 라고 할 때, a, b 를 올바르게 구한 것은?

$$\bigcirc \sqrt{24} \div \sqrt{6}$$

$$\bigcirc \frac{\sqrt{18}}{\sqrt{9}}$$

$$\bigcirc -\sqrt{21} \div \sqrt{3}$$

$$\bigcirc (-\sqrt{6}) \div (-\sqrt{2})$$

$$\bigcirc 8 \div \sqrt{32}$$

①
$$a: 8 \div \sqrt{32}, b: \frac{\sqrt{32}}{\sqrt{32}}$$

①
$$a: 8 \div \sqrt{32}, b: \frac{\sqrt{18}}{\sqrt{9}}$$

② $a: \frac{\sqrt{18}}{\sqrt{9}}, b: -\sqrt{6} \div -\sqrt{2}$

③
$$a: \sqrt{24} \div \sqrt{6}, b: -\sqrt{21} \div \sqrt{3}$$

④ $a: -\sqrt{21} \div \sqrt{3}, b: -\sqrt{21} \div \sqrt{3}$

(a)
$$a : \sqrt{24} \div \sqrt{6}, b : -\sqrt{6} \div -\sqrt{2}$$

$$\bigcirc \frac{\sqrt{18}}{\sqrt{9}} = \sqrt{2}$$

따라서 가장 작은 값은
$$a:-\sqrt{21}\div\sqrt{3}$$
, 절댓값이 가장 큰 값은 $b:-\sqrt{21}\div\sqrt{3}$

- $3\sqrt{2} = \sqrt{18}$ $3\sqrt{5} = \sqrt{\frac{5}{4}}$ $2\sqrt{5} = \sqrt{\frac{5}{4}}$ $2\sqrt{2} = \sqrt{\frac{2}{3}} = -\sqrt{\frac{2}{9}}$ $2\sqrt{2} = \sqrt{\frac{4}{25}}$

$$\frac{1}{3}$$

③
$$\frac{2\sqrt{2}}{5} = \sqrt{\frac{2^2 \times 2}{25}} = \sqrt{\frac{8}{25}}$$

17. 다음 중 $\sqrt{5}$ 와 3 사이의 무리수를 모두 고른 것은? (단, 제곱근표에서 $\sqrt{2} = 1.414, \ \sqrt{5} = 2.236$ 이다.)

 $\textcircled{\scriptsize 0}, \textcircled{\tiny 0}, \textcircled{\tiny 0}, \textcircled{\tiny 0}, \textcircled{\tiny 0}$ $\textcircled{1} \ \textcircled{\neg}, \textcircled{\sqsubseteq}, \textcircled{\boxminus}, \textcircled{\curlywedge}$ $\textcircled{4} \ \textcircled{\square}, \textcircled{2}, \textcircled{4}, \textcircled{5} \ \textcircled{5}, \textcircled{6}, \textcircled{6}, \textcircled{6}$

 $\sqrt{5} < x < 3 \rightarrow 2.236 < x < 3$ 인 '무리수' \bigcirc $\sqrt{5} + \sqrt{2} = 2.236 + 1.414 = 3.65 > 3$

(2) $\sqrt{\frac{125}{20}} = \sqrt{\frac{25}{4}} = \sqrt{\frac{5^2}{2^2}} = \frac{5}{2}$ 무리수가 아니다

- ① $\sqrt{0.3} = 0.1a$
- ② $\sqrt{0.03} = 0.1b$
- $\boxed{3}\sqrt{300} = 10a$

- ① $\sqrt{0.3} = \sqrt{\frac{30}{100}} = \frac{\sqrt{30}}{10} = 0.1b$ ② $\sqrt{0.03} = \sqrt{\frac{3}{100}} = \frac{\sqrt{3}}{10} = 0.1a$ ④ $\sqrt{30000} = \sqrt{3 \times 10000} = 100 \sqrt{3} = 100a$

- 19. 한 변의 길이가 각각 $\sqrt{8}$ cm , $\sqrt{11}$ cm 인 정사각형 두 개가 있다. 이 두 정사각형의 넓이를 합하여 하나의 큰 정사각형으로 만들 때, 큰 정사각형의 한 변의 길이는?
 - ① $-\sqrt{19} \text{ cm}$ ② $\sqrt{19} \text{ cm}$ ③ $\pm \sqrt{19} \text{ cm}$ ④ -19 cm ⑤ 19 cm
 - 4 –19 cm

해설

 $(\sqrt{8})^2 + (\sqrt{11})^2 = 19$ 이다. 따라서 큰 정사각형의 한 변의 길이는 19 의 양의 제곱근인 $\sqrt{19}$ (cm) 이다.

- 20. a, b, c의 값이 다음과 같이 주어질 때, $a \times b \times c$ 의 값을 바르게 구한 것은?
 - $a \rightarrow$ 제곱근 36
 - $b \rightarrow 3$ 의 양의 제곱근
 - $c o \sqrt{(-3)^2}$ 의 음의 제곱근

① -18 ② 18 $4 \ 18\sqrt{3}$ $5 \ 108$

- ③ $-18\sqrt{3}$

a=(제곱근 $36)=\sqrt{36}=6$

- b=(3 의 양의 제곱근) = $\sqrt{3}$
- $c=(\sqrt{(-3)^2}$ 의 음의 제곱근) =(3 의 음의 제곱근) $=-\sqrt{3}$
- $\therefore a \times b \times c = 6 \times \sqrt{3} \times (-\sqrt{3}) = -18$

21. a > 0 일 때, 다음 계산에서 옳은 것을 모두 고르면? (정답 2개)

③
$$-\sqrt{169a^2} - \sqrt{(-3a)^2} = -10a$$

④ $(-\sqrt{3a})^2 - (-\sqrt{7a})^2 = 10a$

$$(\sqrt{2a})^2 + (-\sqrt{a^2}) = a$$

②
$$\sqrt{(11a)^2} + \sqrt{(-11a)^2} = 11a + 11a = 22a$$

해설

$$(3) - \sqrt{169a^2} - \sqrt{(-3a)^2} = -13a - 3a = -16a$$

$$3 - \sqrt{169a^2} - \sqrt{(-3a)^2} = -13a - 3a = -16a$$

$$4 (-\sqrt{3a})^2 - (-\sqrt{7a})^2 = 3a - 7a = -4a$$

22. a > 0 일 때, $\sqrt{(-4a)^2} - \sqrt{9a^2} + (-\sqrt{2a})^2$ 을 간단히 하면?

① -a ② 3a ③ 5a ④ a ⑤ -3a

 $\sqrt{(4a)^2} - \sqrt{(3a)^2} + (\sqrt{2a})^2$ = |4a| - |3a| + 2a = 4a - 3a + 2a = 3a

23. 다음 설명 중 옳지 <u>않은</u> 것을 모두 고르면?

- ① 두 유리수 $\frac{1}{5}$ 과 $\frac{1}{3}$ 사이에는 무수히 많은 유리수가 있다. ② 두 무리수 $\sqrt{5}$ 와 $\sqrt{6}$ 사이에는 무수히 많은 무리수가 있다.
- ③ $\sqrt{5}$ 에 가장 가까운 유리수는 2 이다.
- ④ 서로 다른 두 유리수의 합은 반드시 유리수이지만, 서로 다른 두 무리수의 합 또한 반드시 무리수이다. ⑤ 실수와 수직선 위의 점 사이에는 일대일 대응이 이루어진다.

③ $\sqrt{4}$ 와 $\sqrt{5}$ 사이에는 무수히 많은 유리수가 존재 한다.

- ④ 두 무리수를 더해 유리수가 될 수도 있다.
- 예) $\sqrt{2} + (-\sqrt{2}) = 0$

24. 다음은 실수를 분류한 표이다. □안에 들어갈 말로 바르게 짝지어진 것을 $\underline{\mathbf{PF}}$ 고르면? (정답 2개)



- ① ㄱ. 비순환소수 ② ㄴ. 무리수
- ⑤ ㄹ. 무한소수
- ③ c. 무한소수 ④ c. 순환소수

25. 다음 식을 간단히 하면?

$$\frac{3}{\sqrt{2}} + \frac{5}{\sqrt{2}} - \sqrt{2}\left(2 + \sqrt{6}\right)$$

- ① $\sqrt{2} 2\sqrt{3}$ ② $\sqrt{2} \sqrt{3}$ ③ $\sqrt{2} 2$
- $4 2\sqrt{2} \sqrt{3}$ $2\sqrt{2} 2\sqrt{3}$

$$\frac{3}{\sqrt{2}} + \frac{5}{\sqrt{2}} - \sqrt{2}(2 + \sqrt{6})$$

$$= \frac{3\sqrt{2}}{2} + \frac{5\sqrt{2}}{2} - (2\sqrt{2} + 2\sqrt{3})$$

$$= 4\sqrt{2} - (2\sqrt{2} + 2\sqrt{3})$$

$$= 2\sqrt{2} - 2\sqrt{3}$$

26. $\sqrt{45} + \sqrt{80} - k\sqrt{5} = 0$ 일 때, 유리수 k의 값은?

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

 $3\sqrt{5} + 4\sqrt{5} - k\sqrt{5} = 0$ $7\sqrt{5} = k\sqrt{5}$ $\therefore k = 7$

- ${f 27.}~~5-\sqrt{10}$ 의 정수 부분을 a , 소수 부분을 b 라고 할 때, $\dfrac{\sqrt{5}(b+3)}{a}$ 의 값을 구하면?
 - - ① $3\sqrt{5} 5\sqrt{2}$ ② $5\sqrt{5} 7\sqrt{2}$ ③ $7\sqrt{5} 5\sqrt{2}$
- (4) $5\sqrt{5} 3\sqrt{2}$ (5) $3\sqrt{5} 7\sqrt{2}$

 $-4 < -\sqrt{10} < -3, \quad 1 < 5 - \sqrt{10} < 2$ a = 1, $b = 4 - \sqrt{10}$

 $\frac{\sqrt{5}(b+3)}{a} = \frac{\sqrt{5}(4-\sqrt{10}+3)}{1}$ $= 7\sqrt{5}-5\sqrt{2}$

- **28.** $5-\sqrt{3}$ 의 정수 부분을 a , 소수 부분을 b 라고 할 때, 2a-b 의 값을 구하면?

 - ① $1 + 2\sqrt{3}$ ② $3 + \sqrt{3}$
- $34 + \sqrt{3}$
- $4 \ 5 + \sqrt{3}$ $3 + 2\sqrt{3}$

$-2 < -\sqrt{3} < -1$ 이고 $3 < 5 - \sqrt{3} < 4$ 이므로

- $\therefore a = 3, b = 5 \sqrt{3} 3 = 2 \sqrt{3}$
- $\therefore 2a b = 2 \times 3 (2 \sqrt{3}) = 6 2 + \sqrt{3} = 4 + \sqrt{3}$

29. 자연수 x 에 대하여 \sqrt{x} 이하의 자연수의 개수를 f(x) 라고 할 때, f(150) - f(99) 의 값은?

① 2개 ② 3개 ③ 4개 ④ 5개 ⑤ 6개

해설

f(150) - f(99) 는 $\sqrt{99}$ 초과 $\sqrt{150}$ 이하의 자연수의 개수이다. $\sqrt{99} < 10, 11, 12 \le \sqrt{150}$ ∴ 3개

- **30.** $4.1 < \sqrt{x} < 5.6$ 를 만족하는 자연수 x 의 값 중에서 가장 큰 수를 a , 가장 작은 수를 b 라고 할 때, a + b 의 값으로 알맞은 것은?
 - ① 42 ② 45 ③ 48 ④ 51 ⑤ 54

 $4.1 = \sqrt{16.81}$, $5.6 = \sqrt{31.36}$ 이므로 16.81 < x < 31.36

a = 31, b = 17

 $\therefore a + b = 17 + 31 = 48$

해설

31. a는 유리수, b는 무리수일 때, 다음 중 그 값이 항상 무리수인 것은?

 $3 a^2 - b^2$

- ① $\sqrt{a} + b$ (4) *ab*
- ① $a=2,b=-\sqrt{2}$ 일 때, $\sqrt{2}+(-\sqrt{2})=0$ 이므로 유리수이다. ③ $b=\sqrt{2}$ 일 때, $b^2=2$ 이므로 a^2-b^2 는 유리수이다. ④ a=0 일 때, ab=0 이므로 유리수이다.
- ⑤ $a=2, b=\sqrt{8}$ 일 때, $\frac{\sqrt{8}}{\sqrt{2}}=2$ 이므로 유리수이다.

32. 다음 중 무리수인 것은 <u>모두</u> 몇 개인가?

$$\sqrt{2} + 3, -\sqrt{0.04}, \frac{\pi}{4}$$

$$\sqrt{(-13)^2}, \frac{\sqrt{32}}{\sqrt{2}}, -\frac{\sqrt{25}}{9}$$

① 6 개 ② 5 개 ③ 4 개 ④ 3 개 **⑤** 2 개

유리수:
$$-\sqrt{0.04} = -0.2$$
, $\sqrt{(-13)^2} = 13$,
$$\frac{\sqrt{32}}{\sqrt{2}} = \sqrt{16} = 4$$
, $-\frac{\sqrt{25}}{9} = -\frac{5}{9}$ \therefore 무리수인 것은 $\sqrt{2} + 3$, $\frac{\pi}{4}$ (2 개)