1. 다음 중 그 값이 다른 것을 고르면?

- √7
 - ② 7 의 제곱근
 - ③ $\sqrt{7^2}$ 의 제곱근
- ④ $(-\sqrt{7})^2$ 의 제곱근
- ⑤ $x^2 = 7$ 을 만족시키는 수 x

해설

- ② 7 의 제곱근: ± √7
- ③ $\sqrt{7^2} = 7$ 의 제곱근: $\pm \sqrt{7}$
- ④ $(-\sqrt{7})^2 = 7$ 의 제곱근: $\pm \sqrt{7}$
- ⑤ $x^2 = 7$ 을 만족시키는 수 $x = \pm \sqrt{7}$

2.
$$(-\sqrt{5})^2$$
 의 제곱근은?

①
$$\sqrt{5}$$
 ② $-\sqrt{5}$ ③ $\pm \sqrt{5}$ ④ 5

②
$$-\sqrt{5}$$

- 다음 중 제곱수가 아닌 것 모두 고르면?
 - ① 36 ② 49 ③ -1 ④ 225 ⑤ 50

- -(해설
 - ③ 제곱해서 -1 이 되는 자연수는 존재하지 않으므로 -1 은 제곱수가 아니다.
- ⑤ 제곱해서 50 이 되는 자연수는 존재하지 않으므로 50 은 제곱수가 아니다.

4. a < 0 일 때, $\sqrt{64a^2}$ 을 간단히 한 것으로 옳은 것을 고르면?

①
$$-64a^2$$

③ 8a

$$4 8a^2$$
 $5 64a^2$

8
$$a < 0$$
이므로 $\sqrt{64a^2} = \sqrt{(8a)^2} = -(8a) = -8a$

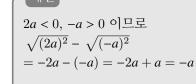
①
$$\sqrt{36} + \left(-\sqrt{12}\right)^2 = 15$$
 ② $\sqrt{5}$

다음 식의 계산 중 옳은 것은?

①
$$\sqrt{36} + \left(-\sqrt{12}\right)^2 = 15$$
 ② $\sqrt{5^2} - \sqrt{(-3)^2} = 8$
③ $\sqrt{(-10)^2} - \sqrt{49} = -17$ ④ $\sqrt{0.04} \div \sqrt{0.1^2} = 0.2$

$$\sqrt[5]{\sqrt{2^2}} \times \sqrt{\left(-\frac{5}{2}\right)^2} = 5$$

①
$$\sqrt{36} + (-\sqrt{12})^2 = 6 + 12 = 18$$


②
$$\sqrt{5^2} - \sqrt{(-3)^2} = 5 - 3 = 2$$

③
$$\sqrt{(-10)^2} - \sqrt{49} = 10 - 7 = 3$$

④ $0.2 \div 0.1 = 2$

$$\sqrt[5]{\sqrt{2^2}} \times \sqrt{\left(-\frac{5}{2}\right)^2} = 2 \times \frac{5}{2} = 5$$

6.
$$a < 0$$
 일 때, $\sqrt{(2a)^2} - \sqrt{(-a)^2}$ 을 간단히 하면?

①
$$3a$$
 ② $-3a$ ③ a ④ $-a$ ⑤ $5a$

7. $4.1 < \sqrt{x} < 5.6$ 를 만족하는 자연수 x 의 값 중에서 가장 큰 수를 a, 가장 작은 수를 b 라고 할 때, a + b 의 값으로 알맞은 것은?

$$4.1 = \sqrt{16.81}$$
, $5.6 = \sqrt{31.36}$ 이므로

$$16.81 < x < 31.36$$

$$a = 31, b = 17$$

$$a = 48 = 48$$

① 42 ② 45 ③ 48 ④ 51 ⑤ 54

8. a > 3 일 때, $\sqrt{(-3a)^2} - \sqrt{(a-3)^2}$ 을 간단히 하면?

①
$$-4a - 3$$

②
$$-4a + 3$$

$$3 -2a + 3$$

④
$$2a - 3$$

$$\bigcirc$$
 2*a* + 3

$$\sqrt{(-3a)^2} - \sqrt{(a-3)^2} = 3a - (a-3) = 2a + 3$$

9.
$$0 < a < 2$$
 일 때, $\sqrt{(a-2)^2} + \sqrt{(2-a)^2}$ 을 간단히 하면?

$$\bigcirc -2a + 4$$

②
$$2a + 4$$

$$3 -2a - 4$$

(4)
$$2a - 4$$

$$\bigcirc$$
 $-2a$

$$\sqrt{(a-2)^2} + \sqrt{(2-a)^2}$$

$$= |a - 2| + |2 - a|$$

= -(a - 2) + 2 - a = -2a + 4

10.
$$3 < a < 4$$
 일 때, $\sqrt{(4-a)^2} + \sqrt{(a-3)^2} - \sqrt{9(a-4)^2}$ 을 간단히 하면?

①
$$a-11$$
 ② $2a-11$ ③ $3a-11$ ④ $4a-11$ ⑤ $5a-11$

11.
$$\sqrt{8x}$$
 가 자연수가 되기 위한 x 를 모두 구하면? (단, $x < 20$ 인 자연수이다.)

해설
$$\sqrt{8x} = \sqrt{2^3 \times x}$$
$$x = 2, 2^3, 2 \times 3^2$$

12. $\sqrt{78+a} = b$ 라 할 때, b 가 자연수가 되도록 하는 가장 작은 자연수 a 와 그때의 b 의 합 a+b 의 값은?

$$78 + a = 9^2 = 81$$

∴ $a = 3$, $b = 9$
∴ $a + b = 12$

13.
$$\sqrt{48a}$$
 와 $\sqrt{52-a}$ 모두 정수가 되도록 하는 양의 정수 a 의 개수는?

① 0 개 ② 1 개 ③ 2 개 ④ 3 개 ⑤ 4 개

√
$$48a = \sqrt{2^4 \times 3 \times a} \cdots$$
 ①
$$52 - a = 0, 1, 4, 9, 16, 25, 49 \cdots$$
 ②
②를 만족하는 $a = 52, 51, 48, 43, 36, 27, 3$ 이 중 ①을 만족하는 것은 3, 27, 48

14. 다음 수를 큰 순서대로 바르게 나열한 것은?

サブ
$$\sqrt{(-3)^2}$$
 , -3 , $-\sqrt{3}$, $-\frac{1}{3}$, $-\frac{1}{\sqrt{3}}$

①
$$-3 > -\sqrt{3} > -\frac{1}{\sqrt{3}} > -\frac{1}{3} > \sqrt{(-3)^2}$$

(3)
$$\sqrt{(-3)^2} > -\frac{1}{3} > -\frac{1}{\sqrt{3}} > -\sqrt{3} > -3$$

(4) $\sqrt{(-3)^2} > -3 > -\sqrt{3} > -\frac{1}{3} > -\frac{1}{\sqrt{3}}$

$$(5)$$
 $-\frac{1}{3} > \sqrt{(-3)^2} > -\sqrt{3} > -3 > -\frac{1}{\sqrt{3}}$

음수는 음수끼리 비교한다. 부호를 제외하고 제곱을 하면

$$-3^{2} = -9, -\left(\sqrt{3}\right)^{2} = -3$$
$$-\frac{1}{3}^{2} = -\frac{1}{9}, -\left(\frac{1}{\sqrt{2}}\right)^{2} = -\frac{1}{3}$$
이다.

$$\therefore -\frac{1}{3} > -\frac{1}{\sqrt{3}} > -\sqrt{3} > -3$$

15.
$$\sqrt{(\sqrt{3}-2)^2} - \sqrt{(2-\sqrt{3})^2}$$
을 계산하면?

①
$$1 - \sqrt{3}$$

④ $-5 - \sqrt{3}$

②
$$5 - 3\sqrt{3}$$

③ $5 - \sqrt{3}$

$$\sqrt{3}-2<0, 2-\sqrt{3}>0$$
 이므로

$$|\sqrt{3} - 2| < 0, \ 2 - \sqrt{3} > 0 \text{ or } \underline{\Box} \underline{\Xi}$$

$$|\sqrt{3} - 2| - |2 - \sqrt{3}| = -\left(\sqrt{3} - 2\right) - \left(2 - \sqrt{3}\right)$$

$$|\sqrt{3} - 2| - |2 - \sqrt{3}| = -(\sqrt{3} - 2) - (2 - \sqrt{3} + 2 - 2 + \sqrt{3})$$
$$= 0$$