이차함수 $y = x^2 + (k-3)x + k$ 의 그래프가 x 축과 만나지 않을 때, 실수 k 의 값의 범위는?

①
$$-1 < k < 7$$
 ② $-1 < k < 8$ ③ $0 < k < 9$
④ $1 < k < 9$ ⑤ $1 < k < 10$

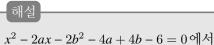
주어진 이차함수의 그래프가
$$x$$
 축과 만나지 않으려면 이차방정식 $x^2 + (k-3)x + k = 0$ 이 실근을 갖지 않아야 하므로 $D = (k-3)^2 - 4k < 0$ $k^2 - 10k + 9 < 0, (k-1)(k-9) < 0$

1 < k < 9

2. 이차함수 $y = x^2 - 2ax - 2b^2 - 4a + 4b - 6$ 의 그래프가 x축에 접할 때, $a^2 + b^2$ 의 값은? (단, a, b는 실수)

(4) 10

(5) 13



$$\frac{D}{4} = a^2 - (-2b^2 - 4a + 4b - 6) = 0$$

$$\therefore (a+2)^2 + 2(b-1)^2 = 0$$
이 때, a, b 가 실수이므로 $a+2=0, b-1=0$
따라서 $a=-2, b=1$ 이므로
$$a^2 + b^2 = 5$$

3. 두 이차함수의 그래프 $y = x^2 - 2ax + 4$, $y = 2x^2 - 2ax + a^2 + 3a$ 가 모두 x축과 교점을 갖도록 상수 a의 값의 범위를 정하면?

①
$$-9 \le a \le -5$$
 ② $-6 \le a \le -2$ ③ $-3 \le a \le 0$

(4) $2 \le a \le 5$ (5) $3 \le a \le 7$

에설 이차함수
$$y = x^2 - 2ax + 4$$
의 그래프가 x 축과 교점을 가지려면

$$x^2 - 2ax + 4 = 0$$
 이 사
$$\frac{D_1}{A} = a^2 - 1 \cdot 4 \ge 0, \ a^2 - 4 \ge 0, \ (a+2)(a-2) \ge 0$$

또, 이차함수
$$y = 2x^2 - 2ax + a^2 + 3a$$
의 그래프가 x 축과 교점을 가지려면

 $\therefore a < -2 \stackrel{\leftarrow}{\Sigma} = a > 2 \cdot \cdots \quad \bigcirc$

$$2x^2 - 2ax + (a^2 + 3a) = 0$$
 에서

$$\frac{D_2}{A} = a^2 - 2(a^2 + 3a) \ge 0, \ a^2 + 6a \le 0, \ a(a+6) \le 0$$

(1) 두 그래프 모두 x축과 교점을 갖도록 하는 a의 값의 범위는 위의 수직선에게 \bigcirc 과 \bigcirc 의 공통 부분이므로 $-6 \le a \le -2$

4. 이차함수 $y = x^2 + 2x + k$ 의 그래프가 x축과 만나는 두 점 사이의 거리가 $4\sqrt{2}$ 일 때, 상수 k의 값은?

①
$$-8$$
 ② -7 ③ -6 ④ -5 ⑤ -4

해설 이차함수
$$y=x^2+2x+k$$
의 그래프가 x 축과 만나는 두 점의 x 좌표를 각각 α , β (α < β) 라고 하면 α , β 는 이차방정식 $x^2+2x+k=0$ 의 두 실근이다. 이 때, 근과 계수의 관계에 의하여 $\alpha+\beta=-2$, $\alpha\beta=k$ 이고 x 축 위의 두 교점 사이의 거리가 $4\sqrt{2}$ 이므로 $\beta-\alpha=4\sqrt{2}$ ($\alpha-\beta$) $^2=(\alpha+\beta)^2-4\alpha\beta$ 에서 $\left(4\sqrt{2}\right)^2=(-2)^2-4k$, $32=4-4k$ $\therefore k=-7$

5. 이차함수 $y = x^2 - 2(k-1)x + 9$ 의 그래프가 x축과 만나지 않기 위한 정수 k의 개수는?

이차함수 $y = x^2 - 2(k-1)x + 9$ 의 그래프가 x축과 만나지

따라서. k값 중 정수인 것은 -1, 0, 1, 2, 3의 5개이다.

이차방정식
$$y = x^2 - 2(k-1)x + 9 = 0$$
의 판별식을 D 라 할 때 $D < 0$ 이어야 한다.
$$\frac{D}{4} = (k-1)^2 - 9 < 0$$
$$k^2 - 2k - 8 < 0, \quad (k+2)(k-4) < 0$$
$$\therefore -2 < k < 4$$

해설

않으려면

6. 포물선
$$y = x^2 - 2x + 4k$$
 의 그래프가 x 축과 서로 만나지 않을 때의 k 의 범위를 구하면?

①
$$k < \frac{1}{2}$$
 ② $k < -\frac{1}{2}$ ③ $k > \frac{1}{4}$ ③ $k > \frac{1}{4}$

해설

$$y = x^2 -$$

만나지 않
 $D < 0$ 이
 $\frac{D}{4} = 1 -$

$$y = x^2 - 2x + 4k$$
 의 그래프가 x 축과
만나지 않으려면 판별식 D 가 $D < 0$ 이어야 하므로
$$\frac{D}{4} = 1 - 4k < 0$$
 $\therefore k > \frac{1}{4}$

7. 직선
$$y = x + 4$$
에 평행하고, 곡선 $y = -x^2 + 2$ 에 접하는 직선의 방정식은?

①
$$4x + 4y = 9$$
 ② $4x - 4y = 9$ ③ $-4x + 4y = 9$
④ $-4x - 4y = 5$ ⑤ $-4x - 4y = -5$

직선 y = x + 4에 평행한 직선의 방정식을 y = x + k라 하면

이차방정식
$$x + k = -x^2 + 2$$
,
즉 $x^2 + x + k - 2 = 0$ 의 판별식을 D 라 할 때,
 $D = 1 - 4k + 8 = 0$
 $\therefore k = \frac{9}{4}$
따라서, 구하는 직선의 방정식은 $y = x + \frac{9}{4}$
 $\therefore -4x + 4y = 9$

해설

8. 이차함수 $y = x^2 - ax + 1$ 의 그래프가 x 축과 만나지 않을 때, $f(a) = a^2 - 2a + 2$ 의 최솟값은?

① 1 ② 2 ③ 3 ④
$$\sqrt{2}$$
 ⑤ 5

9. 직선 y = -x + 1을 x축의 방향으로 m만큼 평행이동 하였더니 이차 함수 $y = x^2 - 3x$ 의 그래프에 접하였다. 이때, 상수 m의 값은?

② -1

3 1

4

⑤ 3

해설

직선
$$y = -x + 1$$
을 x 축의 방향으로 m 만큼 평행이동하면

y = -(x - m) + 1 = -x + m + 1이 직선이 $y = x^2 - 3x$ 의 그래프와 접하므로 이차방정식 $x^2 - 3x = -x + m + 1$, 즉. $x^2 - 2x - m - 1 = 0$ 에서

$$\frac{D}{4} = (-1)^2 - (-m - 1) = 0$$
$$2 + m = 0 \qquad \therefore m = -2$$

10. 이차함수 $y = x^2 + ax + b$ 의 그래프가 두 직선 $y = \frac{1}{2}x$ 와 y = -2x에 모두 접할 때. 상수 a의 값은?

①
$$-2$$
 ② $-\frac{3}{2}$ ③ -1 ④ $-\frac{3}{4}$ ⑤ $-\frac{1}{4}$

$$x^{2} + (a+2)x + b = 0$$

$$D = (a+2)^{2} - 4b = 0 \cdots$$

$$x^{2} + ax + b = \frac{1}{2}x \text{ and } x$$

$$x^{2} + \left(a - \frac{1}{2}\right)x + b = 0$$

 $D = \left(a - \frac{1}{2}\right)^2 - 4b = 0 \cdots 2$

①,②에서 $(a+2)^2 = \left(a - \frac{1}{2}\right)^2$

 $\therefore a = -\frac{3}{4}$

 $x^2 + ax + b = -2x$

11. 이차함수
$$y = x^2 + 3x + 1$$
 의 그래프와 직선 $y = -x + 3$ 의 두 교점의 좌표를 (x_1, y_1) , (x_2, y_2) 라 할 때, $y_1 y_2$ 의 값은?

학설
두 교점의
$$x$$
 좌표 x_1 , x_2 는
방정식 $x^2 + 3x + 1 = -x + 3$ 의 실근이다.
 $x^2 + 4x - 2 = 0$ 에서 근과 계수의 관계에 의하여
 $x_1 + x_2 = -4$, $x_1x_2 = -2$
 $\therefore y_1y_2 = (-x_1 + 3)(-x_2 + 3)$
 $= x_1x_2 - 3(x_1 + x_2) + 9$
 $= -2 + 12 + 9 = 19$

12. 이차함수 $y = ax^2 - 5x - 2$ 의 그래프와 직선 y = bx + a 의 교점의 x 좌표가 각각 0, -3 일 때, 상수 a, b 의 합 a + b 의 값은?

①
$$-3$$
 ② -2 ③ -1 ④ 0 ⑤ 1

직선
$$y = bx + a$$
 의 교점의 x 좌표 $0, -3$ 은
이차방정식 $ax^2 - (b+5)x - a - 2 = 0$ 의 두 근이므로 근과 계수의
관계에 의하여
(두근의합) = $0 + (-3) = \frac{b+5}{a}$
∴ $3a + b = -5 \cdots$ ①
(두 근의 곱) = $0 \cdot (-3) = \frac{-a-2}{a}$

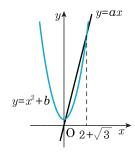
 \bigcirc 에서 b = 1 이므로 a + b = -1

이차함수 $v = ax^2 - 5x - 2$ 의 그래프와

해설

 $\therefore a = -2$

13. 다음 그림과 같이 이차함수 $y = x^2 + b$ 의 그래프와 직선 y = ax 가 서로 두 점에서 만나고, 한 교점의 x 좌표가 $2 + \sqrt{3}$ 일 때.



$$x^2 + b = ax$$
,
즉 $x^2 - ax + b = 0$ 의 한 근이 $2 + \sqrt{3}$ 이다.
이때, a, b 는 모두 유리수이므로
방정식 $x^2 - ax + b = 0$ 의 한 근이 $2 + \sqrt{3}$ 이면
다른 한 근은 $2 - \sqrt{3}$ 이다.

따라서 근과 계수와의 관계에 의하여

 $a = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4$ $b = (2 + \sqrt{3})(2 - \sqrt{3}) = 1$

 $\therefore a+b=5$

14. 두 이차함수 $y = x^2 - ax + b$ 와 $y = x^2 - bx + a$ 의 그래프의 교점이 x 축 위에 있도록 상수 a,b 의 값을 정할 때, a+b 의 값은? (단, $a \neq b$)

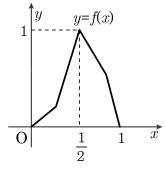
$$p^{2} - ap + b = p^{2} - bp + a$$

 $(a - b)p + a - b = 0$
 $(a - b)(p + 1) = 0$
 $a \neq b$ 이므로 $p = -1$
그런데 교점이 x 축 위에 있으므로
교점의 y 좌표는 0 이다.

 $\therefore a+b=-1$

교점의 x 좌표를 p 라 하면

15. 함수y=f(x) 의 그래프가 다음과 같을 때, $0 \le x \le 1$ 을 만족하는 방정식 $f(f(x))=\frac{1}{2}$ 의 실근의 개수는?



 ① 1개
 ② 2개
 ③ 3개
 ④ 4개
 ⑤ 5개

